|
Abstract The key to the high performance of semantic segmentation models for high-resolution remote sensing images lies in the high domain consistency between the training and testing datasets. The domain discrepancies between different datasets, including differences in geographic locations, sensors’ imaging patterns, and weather conditions, lead to significantly decreased accuracy when a model trained on one dataset is applied to another. Domain adaptation is an effective strategy to address the aforementioned issue. From the perspective of a domain adaptation model, this study developed an adversarial learning-based unsupervised domain adaptation framework for the semantic segmentation of high-resolution remote sensing images. This framework fused the entropy-weighted attention and class-wise domain feature aggregation mechanism into the global and local domain alignment modules, respectively, alleviating the domain discrepancies between the source and target. Additionally, the object context representation (OCR) and Atrous spatial pyramid pooling (ASPP) modules were incorporated to fully leverage spatial- and object-level contextual information in the images. Furthermore, the OCR and ASPP combination strategy was employed to improve segmentation accuracy and precision. The experimental results indicate that the proposed method allows for superior cross-domain segmentation on two publicly available datasets, outperforming other methods of the same type.
|
Keywords
high-resolution remote sensing images
semantic segmentation
adversarial learning
unsupervised domain adaptation
|
|
Issue Date: 23 December 2024
|
|
|
[1] |
卢晓燕. 面向高分辨率遥感影像大范围道路提取的深度学习方法研究[J]. 武汉大学学报(信息科学版), 2023, 48(5):821.
|
[1] |
Lu X Y. Deep learning method for large-scale road extraction from high resolution remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5):821.
|
[2] |
薛源, 覃超, 吴保生, 等. 基于多源国产高分辨率遥感影像的山区河流信息自动提取[J]. 清华大学学报(自然科学版), 2023, 63(1):134-145.
|
[2] |
Xue Y, Qin C, Wu B S, et al. Automatic extraction of mountain river information from multiple Chinese high-resolution remote sensing satellite images[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(1):134-145.
|
[3] |
赵会芹, 于博, 陈方, 等. 基于高分辨率卫星遥感影像滑坡提取方法研究现状[J]. 遥感技术与应用, 2023, 38(1):108-115.
doi: 10.11873/j.issn.1004-0323.2023.1.0108
|
[3] |
Zhao H Q, Yu B, Chen F, et al. Research status of landslide extraction methods based on high-resolution satellite remote sensing images[J]. Remote Sensing Technology and Application, 2023, 38(1):108-115.
|
[4] |
王丽梅, 王延正. 基于高分辨率遥感影像的建筑物提取[J]. 测绘通报, 2023(6):180-183.
doi: 10.13474/j.cnki.11-2246.2023.0191
|
[4] |
Wang L M, Wang Y Z. Buildings extraction based on high-resolution remote sensing imagery[J]. Bulletin of Surveying and Mapping, 2023(6):180-183.
doi: 10.13474/j.cnki.11-2246.2023.0191
|
[5] |
张新长, 黄健锋, 宁婷. 高分辨率遥感影像耕地提取研究进展与展望[J]. 武汉大学学报(信息科学版), 2023, 48(10):1582-1590.
|
[5] |
Zhang X C, Huang J F, Ning T. Progress and prospect of cultivated land extraction from high-resolution remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10):1582-1590.
|
[6] |
董秀春, 刘忠友, 蒋怡, 等. 基于WorldView-2影像和语义分割模型的小麦分类提取[J]. 遥感技术与应用, 2022, 37(3):564-570.
doi: 10.11873/j.issn.1004-0323.2022.3.0564
|
[6] |
Dong X C, Liu Z Y, Jiang Y, et al. Winter wheat extraction of WorldView-2 image based on semantic segmentation method[J]. Remote Sensing Technology and Application, 2022, 37(3):564-570.
|
[7] |
杨军, 于茜子. 结合空洞卷积的FuseNet变体网络高分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(7):1071-1080.
|
[7] |
Yang J, Yu X Z. Semantic segmentation of high-resolution remote sensing images based on improved FuseNet combined with atrous convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7):1071-1080.
|
[8] |
Chen B, Xia M, Qian M, et al. MANet:A multi-level aggregation network for semantic segmentation of high-resolution remote sensing images[J]. International Journal of Remote Sensing, 2022, 43(15/16):5874-5894.
|
[9] |
Wang Y, Zeng X, Liao X, et al. B-FGC-net:A building extraction network from high resolution remote sensing imagery[J]. Remote Sensing, 2022, 14(2):269.
|
[10] |
Guo Y, Liu Y, Georgiou T K, et al. A review of semantic segmentation using deep neural networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7(2):87-93.
|
[11] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2017:640-651.
|
[12] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015:234-241.
|
[13] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[14] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:6230-6239.
|
[15] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
|
[16] |
Zhao S, Yue X, Zhang S, et al. A review of single-source deep unsupervised visual domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):473-493.
|
[17] |
Xu M, Wu M, Chen K, et al. The eyes of the gods:A survey of unsupervised domain adaptation methods based on remote sensing data[J]. Remote Sensing, 2022, 14(17):4380.
|
[18] |
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV).Venice,Italy.IEEE, 2017:2242-2251.
|
[19] |
Yang Y, Soatto S. FDA:Fourier domain adaptation for semantic segmentation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,WA,USA.IEEE, 2020:4084-4094.
|
[20] |
Hoffman J, Tzeng E, Park T, et al. CyCADA:Cycle-consistent adversarial domain adaptation[J/OL]. arXiv, 2017. https://arxiv.org/abs/1711.03213.pdf.
url: https://arxiv.org/abs/1711.03213.pdf
|
[21] |
Ma H, Lin X, Wu Z, et al. Coarse-to-fine domain adaptive semantic segmentation with photometric alignment and category-center regularization[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville,TN,USA.IEEE, 2021:4050-4059.
|
[22] |
Zou Y, Yu Z, Vijaya Kumar B V K, et al. Unsupervised domain ada-ptation for semantic segmentation via class-balanced self-training[C]// Computer Vision - ECCV 2018:15th European Conference,Munich,Germany, September 8-14,2018,Proceedings,Part III.ACM, 2018:297-313.
|
[23] |
Zheng Z, Yang Y. Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(4):1106-1120.
|
[24] |
Tsai Y H, Hung W C, Schulter S, et al. Learning to adapt structure output space for semantic segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:7472-7481.
|
[25] |
Luo Y, Zheng L, Guan T, et al. Taking a closer look at domain shift:Category-level adversaries for semantics consistent domain adaptation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.IEEE, 2019:2502-2511.
|
[26] |
Vu T H, Jain H, Bucher M, et al. ADVENT:Adversarial entropy minimization for domain adaptation in semantic segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.IEEE, 2019:2512-2521.
|
[27] |
Guo X, Yang C, Li B, et al. MetaCorrection:Domain-aware meta loss correction for unsupervised domain adaptation in semantic segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville,TN,USA.IEEE, 2021:3926-3935.
|
[28] |
Yuan Y, Chen X, Wang J. Object-contextual representations for semantic segmentation[J/OL]. arXiv, 2019. https://arxiv.org/abs/1909.11065.pdf.
url: https://arxiv.org/abs/1909.11065.pdf
|
[29] |
Yuan Y, Chen X, Chen X, et al. Segmentation transformer:Object-contextual representations for semantic segmentation[J/OL]. arXiv, 2019(2021-04-30). https://arxiv.org/abs/1909.11065v2.
url: https://arxiv.org/abs/1909.11065v2
|
[30] |
Huang S, Han W, Chen H, et al. Recognizing zucchinis intercropped with sunflowers in UAV visible images using an improved method based on OCRNet[J]. Remote Sensing, 2021, 13(14):2706.
|
[31] |
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. arXiv, 2015. https://arxiv.org/abs/1511.06434.pdf.
url: https://arxiv.org/abs/1511.06434.pdf
|
[32] |
Bottou L. Large-scale machine learning with stochastic gradient descent[C]// Proceedings of COMPSTAT2010:19th International Conference on Computational Statistics.Physica-Verlag HD, 2010:177-186.
|
[33] |
Kingma D P, Adam B J. Adam:A method for stochastic optimization[J/OL]. arXiv, 2014(2017-01-30). https://arxiv.org/abs/1412.6980.
url: https://arxiv.org/abs/1412.6980
|
[34] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:770-778.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|