Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 149-157     DOI: 10.6046/zrzyyg.2023169
|
An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images
PAN Junjie(), SHEN Li(), YAN Xin, NIE Xin, DONG Kuanlin
Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610097, China
Download: PDF(3941 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The key to the high performance of semantic segmentation models for high-resolution remote sensing images lies in the high domain consistency between the training and testing datasets. The domain discrepancies between different datasets, including differences in geographic locations, sensors’ imaging patterns, and weather conditions, lead to significantly decreased accuracy when a model trained on one dataset is applied to another. Domain adaptation is an effective strategy to address the aforementioned issue. From the perspective of a domain adaptation model, this study developed an adversarial learning-based unsupervised domain adaptation framework for the semantic segmentation of high-resolution remote sensing images. This framework fused the entropy-weighted attention and class-wise domain feature aggregation mechanism into the global and local domain alignment modules, respectively, alleviating the domain discrepancies between the source and target. Additionally, the object context representation (OCR) and Atrous spatial pyramid pooling (ASPP) modules were incorporated to fully leverage spatial- and object-level contextual information in the images. Furthermore, the OCR and ASPP combination strategy was employed to improve segmentation accuracy and precision. The experimental results indicate that the proposed method allows for superior cross-domain segmentation on two publicly available datasets, outperforming other methods of the same type.

Keywords high-resolution remote sensing images      semantic segmentation      adversarial learning      unsupervised domain adaptation     
ZTFLH:  TP751  
  P237  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junjie PAN
Li SHEN
Xin YAN
Xin NIE
Kuanlin DONG
Cite this article:   
Junjie PAN,Li SHEN,Xin YAN, et al. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023169     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/149
Fig.1  Schematic diagram of OA-GAL framework structure
Fig.2  A combination of OCR/ASPP dual classifiers
Fig.3  EWG module
Fig.4  CAL module
Fig.5  Sample of source and target domain datasets
Tab.1  Example of UDA segmentation results for Potsdam → Vaihingen
模型 mIOU IOU
其他类 汽车 树木 低矮植被 建筑 道路
Deeplabv2 0.264 7 0.066 3 0.074 5 0.186 5 0.244 3 0.488 6 0.527 9
AdaptSegNet 0.423 1 0.075 2 0.263 4 0.457 8 0.401 1 0.720 1 0.620 9
CLAN 0.410 1 0.084 7 0.164 0 0.544 1 0.274 1 0.773 0 0.619 9
ADVENT 0.434 8 0.168 6 0.221 8 0.510 7 0.316 9 0.768 2 0.622 4
Metacorrection 0.440 4 0.102 8 0.249 5 0.517 1 0.400 1 0.744 8 0.628 1
OA-GAL 0.474 8 0.114 8 0.219 5 0.573 2 0.435 5 0.818 2 0.687 4
Tab.2  Evaluation of the results of the Potsdam → Vaihingen comparative experiment
Fig.6  Example of visualization of pseudo labels and entropy regions
模型 OCR/ASPP CAL EWG mIOU
基线模型 0.423 1
OCR/ASPP 0.438 2
OCR/ASPP+CAL 0.451 9
OCR/ASPP+EWG 0.453 7
OA-GAL 0.474 8
Tab.3  Ablation experiment
[1] 卢晓燕. 面向高分辨率遥感影像大范围道路提取的深度学习方法研究[J]. 武汉大学学报(信息科学版), 2023, 48(5):821.
[1] Lu X Y. Deep learning method for large-scale road extraction from high resolution remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5):821.
[2] 薛源, 覃超, 吴保生, 等. 基于多源国产高分辨率遥感影像的山区河流信息自动提取[J]. 清华大学学报(自然科学版), 2023, 63(1):134-145.
[2] Xue Y, Qin C, Wu B S, et al. Automatic extraction of mountain river information from multiple Chinese high-resolution remote sensing satellite images[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(1):134-145.
[3] 赵会芹, 于博, 陈方, 等. 基于高分辨率卫星遥感影像滑坡提取方法研究现状[J]. 遥感技术与应用, 2023, 38(1):108-115.
doi: 10.11873/j.issn.1004-0323.2023.1.0108
[3] Zhao H Q, Yu B, Chen F, et al. Research status of landslide extraction methods based on high-resolution satellite remote sensing images[J]. Remote Sensing Technology and Application, 2023, 38(1):108-115.
[4] 王丽梅, 王延正. 基于高分辨率遥感影像的建筑物提取[J]. 测绘通报, 2023(6):180-183.
doi: 10.13474/j.cnki.11-2246.2023.0191
[4] Wang L M, Wang Y Z. Buildings extraction based on high-resolution remote sensing imagery[J]. Bulletin of Surveying and Mapping, 2023(6):180-183.
doi: 10.13474/j.cnki.11-2246.2023.0191
[5] 张新长, 黄健锋, 宁婷. 高分辨率遥感影像耕地提取研究进展与展望[J]. 武汉大学学报(信息科学版), 2023, 48(10):1582-1590.
[5] Zhang X C, Huang J F, Ning T. Progress and prospect of cultivated land extraction from high-resolution remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10):1582-1590.
[6] 董秀春, 刘忠友, 蒋怡, 等. 基于WorldView-2影像和语义分割模型的小麦分类提取[J]. 遥感技术与应用, 2022, 37(3):564-570.
doi: 10.11873/j.issn.1004-0323.2022.3.0564
[6] Dong X C, Liu Z Y, Jiang Y, et al. Winter wheat extraction of WorldView-2 image based on semantic segmentation method[J]. Remote Sensing Technology and Application, 2022, 37(3):564-570.
[7] 杨军, 于茜子. 结合空洞卷积的FuseNet变体网络高分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(7):1071-1080.
[7] Yang J, Yu X Z. Semantic segmentation of high-resolution remote sensing images based on improved FuseNet combined with atrous convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7):1071-1080.
[8] Chen B, Xia M, Qian M, et al. MANet:A multi-level aggregation network for semantic segmentation of high-resolution remote sensing images[J]. International Journal of Remote Sensing, 2022, 43(15/16):5874-5894.
[9] Wang Y, Zeng X, Liao X, et al. B-FGC-net:A building extraction network from high resolution remote sensing imagery[J]. Remote Sensing, 2022, 14(2):269.
[10] Guo Y, Liu Y, Georgiou T K, et al. A review of semantic segmentation using deep neural networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7(2):87-93.
[11] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2017:640-651.
[12] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015:234-241.
[13] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[14] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:6230-6239.
[15] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
[16] Zhao S, Yue X, Zhang S, et al. A review of single-source deep unsupervised visual domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):473-493.
[17] Xu M, Wu M, Chen K, et al. The eyes of the gods:A survey of unsupervised domain adaptation methods based on remote sensing data[J]. Remote Sensing, 2022, 14(17):4380.
[18] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV).Venice,Italy.IEEE, 2017:2242-2251.
[19] Yang Y, Soatto S. FDA:Fourier domain adaptation for semantic segmentation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,WA,USA.IEEE, 2020:4084-4094.
[20] Hoffman J, Tzeng E, Park T, et al. CyCADA:Cycle-consistent adversarial domain adaptation[J/OL]. arXiv, 2017. https://arxiv.org/abs/1711.03213.pdf.
url: https://arxiv.org/abs/1711.03213.pdf
[21] Ma H, Lin X, Wu Z, et al. Coarse-to-fine domain adaptive semantic segmentation with photometric alignment and category-center regularization[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville,TN,USA.IEEE, 2021:4050-4059.
[22] Zou Y, Yu Z, Vijaya Kumar B V K, et al. Unsupervised domain ada-ptation for semantic segmentation via class-balanced self-training[C]// Computer Vision - ECCV 2018:15th European Conference,Munich,Germany, September 8-14,2018,Proceedings,Part III.ACM, 2018:297-313.
[23] Zheng Z, Yang Y. Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(4):1106-1120.
[24] Tsai Y H, Hung W C, Schulter S, et al. Learning to adapt structure output space for semantic segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:7472-7481.
[25] Luo Y, Zheng L, Guan T, et al. Taking a closer look at domain shift:Category-level adversaries for semantics consistent domain adaptation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.IEEE, 2019:2502-2511.
[26] Vu T H, Jain H, Bucher M, et al. ADVENT:Adversarial entropy minimization for domain adaptation in semantic segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.IEEE, 2019:2512-2521.
[27] Guo X, Yang C, Li B, et al. MetaCorrection:Domain-aware meta loss correction for unsupervised domain adaptation in semantic segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville,TN,USA.IEEE, 2021:3926-3935.
[28] Yuan Y, Chen X, Wang J. Object-contextual representations for semantic segmentation[J/OL]. arXiv, 2019. https://arxiv.org/abs/1909.11065.pdf.
url: https://arxiv.org/abs/1909.11065.pdf
[29] Yuan Y, Chen X, Chen X, et al. Segmentation transformer:Object-contextual representations for semantic segmentation[J/OL]. arXiv, 2019(2021-04-30). https://arxiv.org/abs/1909.11065v2.
url: https://arxiv.org/abs/1909.11065v2
[30] Huang S, Han W, Chen H, et al. Recognizing zucchinis intercropped with sunflowers in UAV visible images using an improved method based on OCRNet[J]. Remote Sensing, 2021, 13(14):2706.
[31] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. arXiv, 2015. https://arxiv.org/abs/1511.06434.pdf.
url: https://arxiv.org/abs/1511.06434.pdf
[32] Bottou L. Large-scale machine learning with stochastic gradient descent[C]// Proceedings of COMPSTAT2010:19th International Conference on Computational Statistics.Physica-Verlag HD, 2010:177-186.
[33] Kingma D P, Adam B J. Adam:A method for stochastic optimization[J/OL]. arXiv, 2014(2017-01-30). https://arxiv.org/abs/1412.6980.
url: https://arxiv.org/abs/1412.6980
[34] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:770-778.
[1] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[2] LI Shiqi, YAO Guoqing. A landslide detection method using CNN- and SETR-based feature fusion[J]. Remote Sensing for Natural Resources, 2024, 36(4): 158-164.
[3] SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
[4] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[5] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[6] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[7] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[10] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[11] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[12] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[13] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[14] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[15] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech