Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (3) : 31-35     DOI: 10.6046/gtzyyg.2010.03.07
Technology and Methodology |
The Orthorectification of Ultra-Width Remote Sensing Image
 YU Bing-Yang, YAN Ming, WU Fei, WANG Zhi-Yong
Beijing Landview Mapping Information Technology Co. Ltd., Beijing 100096, China
Download: PDF(857 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The sensor with Ultra-Width has become an important data source. The method for utilizing the commercial remote sensing disposal software to accomplish the orthorectification of the remote sensing image with wide breadth has aroused much attention. BJ-1 small satellite multiple spectral images were used as an example to discuss the technology of orthorectification, and the influencing factors of the product’s geometrical precision using the Generic Pushbroom Model(GPM) and Rational Function Model(RFM) were also comparatively tested in this paper.

 

Keywords Jiangsu province      Beach resource      Developing trend      Remote sensing      Applying prospect     
: 

 

 
  TP 75

 
Issue Date: 20 September 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Ze-jian
WU Shu-liang
Cite this article:   
CAI Ze-jian,WU Shu-liang. The Orthorectification of Ultra-Width Remote Sensing Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 31-35.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.03.07     OR     https://www.gtzyyg.com/EN/Y2010/V22/I3/31

[1]孙家柄,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997.

[2]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1997.

[3]朱华统.大地坐标系的建立[M].北京:测绘出版社,1986.

[4]刘军,张永生,范永弘.基于通用成像模型——有理函数模型的摄影测量定位方法[J].测绘通报,2003(4):10-13.

[5]张永生,刘军,高分辨率遥感卫星立体影像RPC模型定位的算法及其优化[J].测绘工程,2004(3):1-4.

[6]秦绪文.基于拓展RPC模型的多源卫星遥感影像几何处理[D].北京:中国地质大学(北京),2007.

[7]邵茜.线阵CCD卫星遥感影像成像处理模型研究[D].郑州:解放军信息工程大学,2006.

[8]张过.缺少控制点的高分辨率卫星遥感影像几何纠正[D].武汉:武汉大学,2005.

[9]宁晓刚,张晓东,等.SPOT 5影像严格几何纠正方法研究[J].测绘信息与工程,2005(2):43-45.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[12] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[13] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[14] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[15] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech