Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 160-165     DOI: 10.6046/gtzyyg.2012.01.28
"The Results of Remote Sensing Application of National Mineral Resource Potential Assessment" Column |
The Relationship Between Remote Sensing Structures and Gold Deposits and Ore-prospecting Prognosis in Southwest Guizhou
KUANG Zhong, LONG Sheng-qing, ZENG Yu-ren, HUANG Xin-xin, WU Xiao-fang
Guizhou Academy of Geological Survey, Guiyang 550005, China
Download: PDF(4510 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Remote sensing images show that there are two types of stratigraphic layers in southwest Guizhou Province. One is of carbonate platform facies and the other is of groove basin facies. Au deposits occur in short-axis anticlines, dome structures and their associated faults. The positive circular structures and circular images interpreted by remote sensing are of great importance to Au mineral prospecting. In addition,the Au deposits also have certain relationship with the hidden fractures interpreted by remote sensing. Based on the idea mentioned above and using the fused image produced by the data sources of ETM+ and GeoEye data,the authors carried out the remote sensing interpretation and analysis of the structures,and delineated the prognostic areas for Au mineral prospecting.
Keywords Remote sensing      Bands model      Chlorophll-a      Taihu Lake     
:  TP 753  
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jun
LU Kai
WANG Bao-jun
Cite this article:   
CHEN Jun,LU Kai,WANG Bao-jun. The Relationship Between Remote Sensing Structures and Gold Deposits and Ore-prospecting Prognosis in Southwest Guizhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 160-165.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.28     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/160
[1] 冯学仕.贵州省区域矿床成矿系列与成矿规律[M].北京:地质出版社,2004.
[2] 李志中,周萍.构造的遥感解析方法及在中条山铜矿资源调查中的应用[J].国土资源遥感,1998(3):31-36.
[3] 王瑞雪,高建国,杨世瑜.澜沧老厂矿床线-环结构模式拟建及成矿预测[J].国土资源遥感,2007(3):51-55.
[4] 秦小光,赵不亿,李甫安.环形构造成矿预测定量分析——以桂西北地区金矿预测为例[J].国土资源遥感,1993(2):54-60.
[5] 刘平,李沛刚,李克庆,等.黔西南金矿成矿地质作用浅析[J].贵州地质,2006,23(2):83-91.
[6] 贵州石油勘探指挥部地质大队105队.贵州册亨宽向斜及其周缘的构造分析[R].贵阳:贵州石油勘探指挥部,1979.
[7] 冯林,张竹如.泥堡金矿与水银洞金矿地质特征初步对比[J].贵州地质,2005,22(1):22-25
[8] 崔敏中.黔西南紫木凼金矿区卫星图像影像特征及成矿机制初探[C]//贵州省遥感学会.贵州遥感论文集.贵阳:贵州省遥感学会,1989:68-74.
[9] 王来兴,程代全,钱秋松,等.贵州省西南部地区卡林型金矿成矿远景区划报告[R].贵阳:贵州省地质局区域地质调查研究院,1993.
[10] 杨柏林,杨琨,乃赶良,等.黔桂地区微细浸染型金矿遥感找矿研究[J].贵州地质,1996,13(4):300-310.
[11] 董光贵.贵州贞丰背斜区卫星TM影像特征与金矿关系初探[J].贵州地质,1996,13(4):311-315.
[12] 于学政,曾朝铭,张玉君,等.全国矿产资源潜力评价—遥感资料应用技术要求[M].北京:中国国土资源航空物探遥感中心,2010.
[13] 聂爱国,秦德先,管代云,等.峨眉山玄武岩浆喷发对贵州西部区域成矿贡献研究[J].地质与勘探,2007,43(2):50-54.
[14] 刘远辉.贵州金矿地质特征及找矿方向探讨[J].贵州地质,2009,26(3):162-169.
[15] 贵州省地质矿产局.贵州省区域矿产志[M].贵阳:贵州省地质矿产局,1986.
[16] 贵州省地质矿产局.贵州省区域地质志[M].北京:地质出版社,1987.
[17] 何立贤,曾若兰,林立青,等.贵州金矿地质[M].北京:地质出版社,1993.
[18] 贵州省地矿局.1/20万兴仁、安龙、盘县幅地质报告[R].贵阳:贵州省地质矿产局,1980.
[19] 冯济舟.贵州南部微细粒型金矿床地质—地球物理—地球化学找矿模型研究及预测[R].贵阳:贵州省地质矿产局,1993.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech