Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (4) : 104-112     DOI: 10.6046/gtzyyg.2013.04.17
Technology Application |
Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas
TONG Liqiang, NIE Hongfeng, LI Jiancun, GUO Zhaocheng
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(1048 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The spatial distribution,development characteristics,formation conditions and development pattern of geological disasters constitute the foundation of regional disaster prevention, mitigation and dynamic monitoring. As a rapid,economic and accurate survey technology,remote sensing technology has been widely applied to geological disaster investigation. In this paper,based on the findings of the project of serious geological disasters investigation using remote sensing technology in the Himalayas of China,the authors introduced the methods of remote sensing technology for debris flow investigation in such aspects as remote sensing data and remote sensing interpretation keys. Using GIS spatial analysis methods,the authors analyzed distribution characteristics of debris flow in the study area. In addition, the information of the development characteristics of the debris flow scale,water type,shape and length,gully slope,and the direction of movement was extracted. Based on the quantitative statistic indexes of large-scale debris flow under different backgrounds of the rock group of engineering geology,geological structure,topography,land use types,vegetation cover and climate,the authors summarized the basic condition of the debris flow in this study area and its relationship with the influencing factors. The research results will provide the essential data and scientific decision-making for disaster prevention and mitigation in the Himalayas of China.
Keywords remote sensing      urban vegetation      dynamic monitoring      vegetation index     
:  TP79  
Issue Date: 21 October 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MU Jingqin
ZHAN Sheng
Cite this article:   
MU Jingqin,ZHAN Sheng. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 104-112.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.04.17     OR     https://www.gtzyyg.com/EN/Y2013/V25/I4/104
[1] 张瑞江,赵福岳,方洪宾,等.青藏高原近30年现代雪线遥感调查[J].国土资源遥感,2010,22(s1):59-63. Zhang R J,Zhao F Y,Fang H B,et al.Remote sensing survey of existing snowlines in the past 30 years in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):59-63.
[2] 张瑞江,方洪宾,赵福岳,等.青藏高原近30年来现代冰川面积的遥感调查[J].国土资源遥感,2010,22(s1):45-48. Zhang R J,Fang H B,Zhao F Y,et al.Remote sensing survey of existing glaciers in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):45-48.
[3] 方洪宾,赵福岳,张振德,等.青藏高原现代生态地质环境遥感调查与演变研究[M].北京:地质出版社.2009. Fang H B,Zhao F Y,Zhang Z D,et al.Remote sensing survey and evolution study of ecological and geological environment in Qinghai-Tibet Plateau[M].Beijing:Geological Publishing House,2009.
[4] 方洪宾,赵福岳,路云阁,等.青藏高原生态地质环境遥感调查研究[J].国土资源遥感,2007,19(4):61-65. Fang H B,Zhao F Y,Lu Y G,et al.Remote sensing survey of ecological and geological and environment factors in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2007,19(4):61-65.
[5] 徐道明.西藏波曲河冰湖溃决泥石流的形成与沉积特征[J].冰川冻土,1987,9(1):23-34,99. Xu D M.Characteristics of debris flow caused by outburst of glacial lakes on the Boqu River in Xizang,China[J].Journal of Glaciology and Geocryology,1987,9(1): 23-34,99.
[6] 中国科学院青藏高原综合科学考察队.西藏泥石流[M].北京:科学出版社,1979:1-7. Team of Comprehensive Scientific Expedition to the Qinghai-Xizang(Tibet)Plateau,CAS.Debris flow of Xizang[M].Beijing:Science Press,1979:1-7.
[7] 胡桂胜,陈宁生,邓明枫,等.西藏林芝地区泥石流类型及形成条件分析[J].水土保持通报,2011,31(2):193-197,221. Hu G S,Chen N S,Deng M F,et al.Classification and initiation conditions of debris flows in Linzhi Area,Tibet[J].Bulletin of Soil and Water Conservation,2011,31(2):193-197,221.
[8] 蒋忠信.西藏帕隆藏布河谷崩塌滑坡、泥石流的分布规律[J].地理研究,2002,21(4):495-503. Jiang Z X.Differential distribution regularity of collapse-landslides and debris flows along Palong Zangbu River Valley in Tibet[J].Geographical Research,2002,21(4): 495-503.
[9] 何易平,马东涛,崔鹏,等.西藏中尼公路沿线的泥石流[J].地理学报,2002,57(3):275-283. He Y P,Ma D T,Cui P,et al.Debris flows along the China-Nepal Highway[J].ACTA Geographica Sinica,2002,57(3): 275-283.
[10] 吕儒仁,唐邦兴,朱平一.西藏泥石流与环境[M].成都:成都科技大学出版社,1999. Lyu R R,Tang B X,Zhu P Y.Debris flow and environment in Tibet[M].Chengdu:Publishing House of Chengdu Sci.& Tech,1999.
[11] 王治华.青藏公路和铁路沿线的滑坡研究[J].现代地质,2003,17(4):355-362. Wang Z H.Landslides along the Qinghai-Tibet Railway and Highway[J].Geoscience,2003,17(4): 355-362.
[12] 中国科学院青藏高原综合科学考察队.西藏地貌[M].北京:科学出版社,1983:1-7. Team of Comprehensive Scientific Expedition to the Qinghai-Xizang(Tibet)Plateau,CAS.Geomorphology of Xizang(Tibet)[M].Beijing: Science Press,1983:1-7.
[13] 中国科学院青藏高原综合科学考察队.西藏河流域与湖泊[M].北京:科学出版社,1984:10-22. Team of Comprehensive Scientific Expedition to the Qinghai-Xizang(Tibet)Plateau,CAS.Rivers and lakes of Xizang[M].Beijing: Science Press,1984:10-22.
[14] 中国科学院青藏高原综合科学考察队.西藏第四纪地质[M].北京:科学出版社,1983:110-131. Team of Comprehensive Scientific Expedition to the Qinghai-Xizang(Tibet)Plateau,CAS.Quaternary geology in Xizang[M].Beijing:Science Press,1983:110-131.
[15] 中国科学院青藏高原综合科学考察队.西藏南部的沉积岩[M].北京:科学出版社,1981:33-44. Team of Comprehensive Scientific Expedition to the Qinghai-Xizang(Tibet)Plateau,CAS.The sedimentary rocks in Southern Xizang[M].Beijing: Science Press, 1981:33-44.
[16] 潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(11):701-707. Pan G T,Li X Z,Wang L Q,et al.Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J].Geological Bulletin of China,2002,21(11): 701-707.
[17] 刘春玲,祁生文,童立强,等.喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究[J].工程地质学报,2010,18(5):669-676. Liu C L,Qi S W,Tong L Q,et al.Great landslides in Himalaya mountain area and their occurrence with lithology[J].Journal of Engineering Geology,2010,18(5): 669-676.
[18] 水利部长江水利委员会长江科学院.GB50218-94工程岩体分级标准[S].北京:中国计划出版社,1995. The Changjiang River Scientific Research Institute.GB50218-94 Standard for classification of engineering rock masses[S].Beijing: China Planning Press,1995.
[19] 卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002:264-282. Zhuo B X.Remote sensing interpretation and application of engineering geology[M].Beijing: China Railway Publishing House,2002:264-282.
[20] 陈光曦,王继康,王林海.泥石流防治[M].北京:中国铁道出版社,1983:56-80. Chen G S,Wang J K,Wang L H.Debris flow prevention and cure[M].Beijing: China Railway Publishing House,1983:56-80.
[21] 吴积善,田连权,康志成,等.泥石流及其综合治理[M].北京:科学出版社,1993:206. Wu J S,Tian L Q,Kang Z C,et al.Debris flow and its comprehensive control[M].Beijing: Science Press,1993:206.
[22] 中国科学院水利部成都山地灾害与环境研究所.中国泥石流[M].北京:商务印书馆,2000. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences.Debris flows in China[M].Beijing:The Commecial Press,2000.
[23] 刘明光.中国自然地理图集[M].北京:中国地图出版社,1998. Liu M G.Atlas of physical geography of China[M].Beijing:SinoMaps Press,1998.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[10] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[11] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[12] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[13] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[14] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[15] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech