Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (4) : 170-178     DOI: 10.6046/gtzyyg.2014.04.27
Technology Application |
Remote sensing geological characteristics and ore prediction in the Ga’erqiong Cu-Au deposit,Tibet
ZHANG Tingbin1,2, TANG Juxing3, LI Zhijun1, YI Guihua1,4, BIE Xiaojuan1, WU Hua5, GUO Na1,4, ZHANG Zhi1
1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
2. Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources, Chengdu 610059, China;
3. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
4. Geomathematics Key Laboratory of Sichuan Province, Chengdu 610059, China;
5. Tibet Institute of Geological Survey, Lhasa 650000, China
Download: PDF(1472 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The discovery of the Ga'erqiong Cu-Au deposit is an important breakthrough of ore prospecting in western Bangong Lake-Nujiang River metallogenic belt. There are two types of orebodies discovered in this area: One is skarn type, and the other is structure-fracture zone type. Previous studies in this area noticed the genetic relation between granite porphyry and skarn. The authors hold that the Ga'erqiong area has a relatively large ore potential of porphyry deposits. In this paper, based on multi-spectral remote sensing data and aimed at finding new porphyry deposits, the authors carried out the interpretation of linear structure, circular structure, gossanand wall rock zoning, and conducted the extraction of ferric alterations and hydroxyl alterations by using principal component analysis method. The results show that there are NW-NNW trending, NE-NNE trending and nearly SN-trending linear structure groups developed in the study area. Circular structures can be classified into five circular structure systems according to the combined styles. Gossans are comparatively in agreement with mineralized alterations. The wall rocks are rather complicated, but they are favorable for copper mineralization in the Ga'erqiong copper deposit. It is considered that the circular structure systems are the key areas for further ore prospecting.
Keywords ZY-1 02C satellites      GF-1 satellites      Tibet      mine monitoring      remote sensing     
:  TP79  
Issue Date: 17 September 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Yunge
LIU Cai
WANG Jiao
Cite this article:   
LU Yunge,LIU Cai,WANG Jiao. Remote sensing geological characteristics and ore prediction in the Ga’erqiong Cu-Au deposit,Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 170-178.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.04.27     OR     https://www.gtzyyg.com/EN/Y2014/V26/I4/170
[1] 郭娜,陈建平,唐菊兴,等.基于RS技术的西藏甲玛铜多金属矿外围成矿预测研究[J].地学前缘,2010,17(4):280-289. Guo N,Chen J P,Tang J X,et al.A study of the metallogenic prognosis for the periphery of Jiama copper polymetallic ore,Tibet based on the RS method[J].Earth Science Frontiers,2010,17(4):280-289.
[2] 代晶晶,曲晓明,辛洪波.基于ASTER遥感数据的西藏多龙矿集区示矿信息的提取[J].地质通报,2010,29(5):752-759. Dai J J,Qu X M,Xin H B.Extraction of alteration mineral information using ASTER remote sensing data in Duolong area,Tibet,China[J].Geological Bulletin of China,2010,29(5):752-759.
[3] 张玉君,曾朝铭.西藏冈底斯地区斑岩铜矿识别的最佳多光谱遥感异常判据研究[J].矿床地质,2012,31(4):671-698. Zhang Y J,Zeng Z M.Study of optimum discriminator of multi-channel remote sensing anomaly for recognition of porphyry Cu deposits in Gangdese belt[J].Mineral Deposits,2012,31(4):671-698.
[4] 张廷斌,别小娟,吴华,等.斑岩型铜矿找矿预测中环形构造的示矿作用——以玉龙—马拉松多子区为研究区[J].国土资源遥感,2012,24(1):143-149. Zhang T B,Bie X J,Wu H,et al.Metallogenic prognosis significance of circular structures in porphyry copper deposits:A case study of Yulong-Malasongduo area[J].Remote Sensing for Land and Resources,2012,24(1):143-149.
[5] 胡紫豪,唐菊兴,张廷斌,等.西藏多不杂斑岩铜矿ASTER遥感蚀变异常特征[J].国土资源遥感,2012,24(1):150-154. Hu Z H,Tang J X,Zhang T B,et al.Characteristics of remote sensing alteration anomalies from ASTER in the Duobuza porphyry copper deposit[J].Remote Sensing for Land and Resources,2012,24(1):150-154.
[6] 代晶晶,王瑞江,曲晓明,等.TerraSpec波谱仪在西藏多不杂斑岩铜矿区蚀变信息研究中的应用[J].国土资源遥感,2013,25(1):105-110. Dai J J,Wang R J,Qu X M,et al.Application of TerraSpec spectrometer to the study of alteration information in the Duobuza porphyry copper deposit of Tibet[J].Remote Sensing for Land and Resources,2013,25(1):105-110.
[7] 李志军,唐菊兴,姚晓峰,等.藏北阿里地区新发现的尕尔穷铜金多金属矿床地质特征及其找矿前景[J].矿床地质,2011,30(6):1149-1153. Li Z J,Tang J X,Yao X F,et al.Geological characteristics and prospecting potential of Ga'erqiong copper-gold polymetallic deposit in Ali District,Northern Tibet[J].Mineral Deposits,2011,30(6):1149-1153.
[8] 姚晓峰,唐菊兴,王友,等.西藏尕尔穷铜金矿金矿物特征研究[J].地质与勘探,2011,47(6):1018-1025. Yao X F,Tang J X,Wang Y,et al.Characteristics of gold-bearing minerals in the Ga'erqiong copper-gold deposit,Tibet[J].Geology and Exploration,2011,47(6):1018-1025.
[9] 邓世林,唐菊兴,李志军,等.西藏尕尔穷铜金矿床岩体地球化学特征[J].成都理工大学学报:自然科学版,2011,38(1):85-91. Deng S L,Tang J X,Li Z J,et al.Geochemical characteristics of rock mass in the Ga'erqiong Cu-Au deposit,Tibet[J].Journal of Chengdu University of Technology:Science and Technology Edition,2011,38(1):85-91.
[10] 唐菊兴,李志军,刘文周,等.西藏自治区革吉县尕尔穷矿区铜矿详查报告[R].西藏:西藏地质矿产局,2009. Tang J X,Li Z J,Liu W Z,et al.Exploration report of Ga'erqiong copper deposit in Geji County,Tibet[R].Tibet:Geology and Mineral Resources Bureau of Tibet,2009.
[11] 唐菊兴,李志军,孙燕,等.西藏班怒带多龙、尕尔穷斑岩-夕卡岩铜金矿带成矿规律研究[R].西藏:西藏地质矿产局,2013. Tang J X,Li Z J,Sun Y,et al.Study of metallogenic regularity of porphyry-skarn copper-gold belt of Duolong and Ga'erqiong in Tibet[R].Tibet:Geology and Mineral Resources Bureau of Tibet,2013.
[12] 潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533. Pan G T,Mo X X,Hou Z Q,et al.Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J].Acta Petrologica Sinica,2006,22(3):521-533.
[13] 杜德道,曲晓明,王根厚,等.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报,2011,27(7):1994-2002. Du D D,Qu X M,Wang G H,et al.Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture,Tibet:Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites[J].Acta Petrologica Sinica,2011,27(7):1994-2002.
[14] 耿全如,潘桂棠,王立全,等.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J].地质通报,2011,30(8):1261-1274. Geng Q R,Pan G T,Wang L Q,et al.Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet[J].Geological Bulletin of China,2011,30(8):1261-1274.
[15] 姚晓峰,唐菊兴,李志军,等.班公湖-怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义[J].地质论评,2013,59(1):193-200. Yao X F,Tang J X,Li Z J,et al.The redefinition of the ore-forming porphyry's age in Ga'erqiong skarn-type gold-copper deposit,western Bangong lake-Nujiang river metallogenic belt,Xizang(Tibet)[J].Geological Review,2013,59(1):193-200.
[16] 李志军,唐菊兴,姚晓峰,等.班公湖-怒江成矿带西段尕尔穷铜金矿床辉钼矿Re-Os年龄及其地质意义[J].成都理工大学学报:自然科学版,2011,38(6):678-683. Li Z J,Tang J X,Yao X F,et al.Re-Os isotope age and geological significance of molybdenite in the Ga'erqiong Cu-Au deposit of Geji,Tibet,China[J].Journal of Chengdu University of Technology:Science and Technology Edition,2011,38(6):678-683.
[17] 张永庭,张晓东,刘自增,等.宁夏区地质构造与围岩蚀变遥感信息提取[J].国土资源遥感,2012,24(1):132-136. Zhang Y T,Zhang X D,Liu Z Z,et al.The extraction of fault structure and wall rock alteration remote sensing information in Ningxia[J].Remote Sensing for Land and Resources,2012,24(1):132-136.
[18] 张廷斌.斑岩铜矿遥感蚀变信息重现性与优选研究——以西藏自治区典型斑岩铜矿为例[D].成都:西南交通大学,2013. Zhang T B.Study on the repeatability and optimization of remote sensing mineralized alterations about the porphyry copper deposits:A case study of the typical porphyry copper deposits in Tibet[D].Chengdu:Southwest Jiaotong University,2013.
[19] 张廷斌,唐菊兴,黄丁发.矿化蚀变信息提取的TM/ETM+遥感影像模式[J].遥感信息,2009(2):47-51. Zhang T B,Tang J X,Huang D F.The model of alteration information extraction with TM/ETM+ remote sensing[J].Remote Sensing Information,2009(2):47-51.
[20] 张楠楠,周可法,陈曦,等.基于ETM+的遥感蚀变信息提取方法对比研究[J].国土资源遥感,2012,24(2):34-40. Zhang N N,Zhou K F,Chen X,et al.A comparative study of extraction methods for alteration information based on ETM+[J].Remote Sensing for Land and Resources,2012,24(2):34-40.
[21] 别小娟,张廷斌,孙传敏,等.藏东罗布莎蛇绿岩遥感岩矿信息提取方法研究[J].国土资源遥感,2013,25(3):72-78. Bie X J,Zhang T B,Sun C M,et al.Study of methods for extraction of remote sensing information of rocks and altered minerals from Luobusha ophiolite in east Tibet[J].Remote Sensing for Land and Resources,2013,25(3):72-78.
[22] 唐菊兴,张志,李志军,等.西藏尕尔穷-嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向[J].地球学报,2013,34(4):385-394. Tang J X,Zhang Z,Li Z J,et al.The metallogensis,deposit model and prospecting direction of the Ga'erqiong-Galale copper-gold ore field,Tibet[J].Acta Geoscientica Sinica,2013,34(4):385-394.
[23] 张云国,周朝宪.斑岩铜矿床研究进展[J].地球科学进展,2011,26(11):1173-1190. Zhang Y G,Zhou C X.Review on porphyry copper deposit[J].Advances in Earth Science,2011,26(11):1173-1190.
[24] 姚鹏,郑明华,彭勇民,等.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,2002,48(5):468-479. Yao P,Zheng M H,Peng Y M,et al.Sources of ore-forming materials and the genesis of the Jiama copper and polymetallic deposit in Gangdise island-arc belt,Xizang[J].Geological Review,2002,48(5):468-479.
[25] 潘凤雏,邓军,姚鹏,等.西藏甲马铜多金属矿床夕卡岩的喷流成因[J].现代地质,2002,16(4):359-364. Pan F C,Deng J,Yao P,et al.The eruptiveorigins of copper andmulti-metal deposits in the skarnsin Jiama,Tibet[J].Geosciences,2002,16(4):359-364.
[26] 唐菊兴,王登红,汪雄武,等.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,2010,31(4):495-506. Tang J X,Wang D H,Wang X W,et al.Geological features and metallogenic model of the Jiama copper-polymetallic deposit in Tibet[J].Acta Geoscientica Sinica,2010,31(4):495-506.
[27] 应立娟,王登红,唐菊兴,等.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J].地质学报,2010,84(8):1165-1174. Ying L J,Wang D H,Tang J X,et al.Re-Os dating of molybdenite from the Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J].Acta Geologica Sinica,2010,84(8):1165-1174.
[28] 郑文宝,唐菊兴,畅哲生,等.西藏甲玛铜多金属矿床地质地球化学特征及成因浅析[J].地质与勘探,2010,46(6):985-994. Zheng W B,Tang J X,Chang Z S,et al.Geological and geochemical characteristics and genesis of the Jiama polymetallic copper deposit in Tibet[J].Geology and Exploration,2010,46(6):985-994.
[29] 唐菊兴,邓世林,郑文宝,等.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,2011,30(2):179-196. Tang J X,Deng S L,Zheng W B,et al.An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County,Tibet[J].Mineral Deposits,2011,30(2):179-196.
[30] 李志军,唐菊兴,胡正华,等.西藏阿里地区尕尔穷铜金矿主要找矿标志特征——岩体蚀变、岩石高光谱、岩石地球化学测量[J].矿物学报,2011(s1):364-365. Li Z J,Tang J X,Hu Z H,et al.The primary prospecting indicator characteristics of rock alteration,rock hyperspectral,and lithogeochemistry surveying in Ga'erqiong copper-gold deposit,A-Li area,Tibet,China[J].Acta Mineralogica Sinica,2011(s1):364-365.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech