Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (1) : 81-86     DOI: 10.6046/gtzyyg.2015.01.13
Technology and Methodology |
A comparative analysis between land surface temperature and outgoing long wave radiation based on the application of earthquake monitoring
JING Feng1, SHEN Xuhui1, KANG Chunli2, XIONG Pan1
1. Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China;
2. China Earthquake Networks Center, China Earthquake Administration, Beijing 100045, China
Download: PDF(8158 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Land surface temperature (LST) and outgoing long wave radiation (OLR), which are commonly used in seismic monitoring, were compared and analyzed from their own characteristics and seismic applications. The analytical results of the global data show that LST and OLR at high latitudes and mid-latitudes have the consistency in spatial distribution, but show a significant difference in equatorial and low-latitude regions, and this difference is closely related to the global total cloud amount. The results of feature points selected according to the cloudiness distribution in China's mainland show that LST and OLR have poor synchronization in the region whose cloud amount is greater than 65% and show better synchronization in the region whose cloud amount is less than 65%. On such a basis, the authors selected Qinghai region where the synchronization is relatively good and mid-south China where the synchronization is poor as the test areas. The results achieved show that the spatial, temporal and intensity characteristics of two types of data can be either identical or different, as shown by the comparison between the two computing results using the vorticity method. LST mainly reflects the warming temperature phenomenon whereas OLR is focused on a comprehensive reflection of the whole earth-atmosphere system.

Keywords Central Asia      land degradation      time series      Kendall      remote sensing     
:  TP79  
Issue Date: 08 December 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KUANG Wei
MA Yonggang
LI Hong
LIU Chao
Cite this article:   
KUANG Wei,MA Yonggang,LI Hong, et al. A comparative analysis between land surface temperature and outgoing long wave radiation based on the application of earthquake monitoring[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 81-86.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.01.13     OR     https://www.gtzyyg.com/EN/Y2015/V27/I1/81

[1] Gorny V I,Sal'man A G,Tronin A A,et al.Outgoing infrared radiation of the earth as an indicator of seismic activity [J].Proc Acad Sci USSR,l988,30(1):67-69.

[2] 刘德富,罗灼礼,彭克银.强烈地震前的OLR异常现象[J].地震,1997,17(2):126-132. Liu D F,Luo Z L,Peng K Y.OLR anomalous phenomena before strong earthquakes[J].Earthquake,1997,17(2):126-132.

[3] 康春丽,刘德富,陈艳,等.长波辐射(OLR)信息预测华北地震的方法研究[J].西北地震学报,2006,28(1):59-63. Kang C L,Liu D F,Chen Y,et al.Research on earthquake prediction method in North China using outgoing-longwave-radiation information[J].Northwestern Seismological Journal,2006,28(1):59-63.

[4] Dey S,Singh R P.Surface latent heat flux as an earthquake precursor [J].Natural Hazards and Earth System Sciences,2003,3:749- 755.

[5] Chen M H,Deng Z H,Ma X J.Probable surface latent heat flux anomalies before the 2010 Chile Ms 8.8 earthquake and its relationship to the variations of surface temperature[J].Chinese Journal of Geophysics,2011,54(7):1738-1744.

[6] 刘善军,吴立新,李金平,等.台湾恒春地震前的卫星热红外异常特征及其机理[J].科技导报,2007,25(6):32-37. Liu S J,Wu L X,Li J P,et al.Features and mechanisms of the satellite thermal infrared anomaly before Hengchun earthquake in Taiwan region[J].Science & Technology Review,2007,25(6):32-37.

[7] 杨青生,刘闯.MODIS数据陆面温度反演研究[J].遥感技术与应用,2004,19(2):90-94. Yang Q S,Liu C.Retrieving land surface temperature from MODIS data[J].Remote Sensing Technology and Application,2004,19(2):90-94.

[8] George O,Arnold G,Robert E.Satellite determinations of the relationship between total longwave radiation flux and infrared window radiance[J].Journal of Climate and Applied Meteorology,1984,23(3):416-425.

[9] Dobrovolsky I P,Zubkov S I,Miachkin V I.Estimation of the size of earthquake preparation zones[J].Pure and Applied Geophysics,1979,117(5):1025-1044.

[10] 王旻燕,王伯民.ISCCP产品和我国地面观测总云量差异[J].应用气象学报,2009,20(4):411-418. Wang M Y,Wang B M.Total cloud amount difference between ISCCP product and ground observation over China[J].Journal of Applied Meteorological Science,2009,20(4):411-418.

[11] 高蓉,陈少勇,董安祥.青藏高原低云量的年际变化及其稳定性[J].干旱区研究,2007,24(6):760-765. Gao R,Chen S Y,Dong A X.Study on the annual change and stability of low-cloud amount over the Qinghai-Tibetan plateau[J].Arid Zone Research,2007,24(6):760-765.

[12] Jing F,Gu X F,Shen X H.Study on outgoing longwave radiation variations associated with strong earthquake[C]//Ma X R,Yang B H,Li M.International Conference on Space Information Technology 2009.Beijing:International Society for Optics and Photonics,2009:765113-765113-6.

[13] Rawat V,Saraf A K,Das J,et al.Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania[J].Natural Hazards,2011,59(1):33-46.

[14] Ouzounov D,Liu D F,Chunli K,et al.Outgoing long wave radiation variability from IR satellite data prior to major earthquakes[J].Tectonophysics,2007,431(1-4):211-220.

[15] Ouzounov D,Bryant N,Logan T,et al.Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003[J].Physics and Chemistry of the Earth,Parts A/B/C,2006,31(4-9):154-163.

[16] 吴立新,刘善军,陈云浩,等.汶川地震前卫星热红外异常与云异常现象[J].科技导报,2008,26(10):32-36. Wu L X,Liu S J,Chen Y H,et al.Satellite thermal infrared and cloud abnormities before wenchuan earthquake[J].Science and Technology Review,2008,26(10):32-36.

[17] Dey S,Sarkar S,Singh R P.Anomalous changes in column water vapor after Gujarat earthquake[J].Advances in Space Research,2004,33(3):274-278.

[18] Pulinets S A,Dunajecka M A.Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M 8.1 Sept 19,1985 as a possible indicator of interaction between tectonic plates[J].Tectonophysics,2007,431(1-4):221-230.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[10] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[11] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[14] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[15] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech