Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (2) : 29-35     DOI: 10.6046/gtzyyg.2015.02.05
Technology and Methodology |
Classification of LiDAR point clouds in urban areas based on the analysis of regional multi-return density
LI Lelin1, JIANG Wanshou2, GUO Chengfang3
1. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China;
2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
3. Architectural Institute of Technology, Liuzhou Railway Vocational Technical College, Liuzhou 545007, China
Download: PDF(5012 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

A new strategy for the classification of raw LiDAR points in urban areas, which is based on the comprehensive utilization of echo features of different object types and terrain information, is proposed in this paper according to a regional multi-return density analysis. The main procedure of the classification of the off-terrain points begins with the construction of Triangulated Irregular Network (TIN), and then the region of each object is captured by the contours clustering based on the topological relations of various contours traced from the TIN. Finally, the type of the object is recognized by the statistical analysis of the regional multi-return density through the significant difference between the building region and the vegetation region. This method not only makes good use of the difference in echo features between different objects such as buildings and trees but also confirms the existence of the multi-returns on the edges of the building. At the same time, the adaptive region determination of the objects is accomplished following the contours clustering. So the proposed method can dramatically increase the classification accuracy and overcome the weakness of the traditional methods, thus being more useful to the study and application of such aspects as building reconstruction and parameters estimation of the trees. Experiments prove that the new algorithm can get an effective classification.

Keywords net primary productivity (NPP)      carnegie-ames-stanford approach(CASA) model      remote sensing      Beijing     
:  TP181  
  TP79  
Issue Date: 02 March 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YIN Kai
TIAN Yichen
YUAN Chao
ZHANG Feifei
YUAN Quanzhi
HUA Lizhong
Cite this article:   
YIN Kai,TIAN Yichen,YUAN Chao, et al. Classification of LiDAR point clouds in urban areas based on the analysis of regional multi-return density[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 29-35.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.02.05     OR     https://www.gtzyyg.com/EN/Y2015/V27/I2/29

[1] Sithole G,Vosselman G.Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,59(1/2):85-101.

[2] 张齐勇,岑敏仪,周国清,等.城区LiDAR点云数据的树木提取[J].测绘学报,2009,38(4):330-335. Zhang Q Y,Cen M Y,Zhou G Q,et al.Extracting trees from LiDAR data in urban region[J].Acta Geodaetica et Cartographica Sinica,2009,38(4):330-335.

[3] 许晓东,张小红,程世来.航空LiDAR的多次回波探测方法及其在滤波中的应用[J].武汉大学学报:信息科学版,2007,32(9):778-781. Xu X D,Zhang X H,Cheng S L.Detection of multiple echoes and its application in filtering of airborne LiDAR[J].Geomatics and Information Science of Wuhan University,2007,32(9):778-781.

[4] 张小红.利用机载LiDAR双次回波高程之差分类激光脚点[J].测绘科学,2006,31(4):48-50. Zhang X H.Airborne LiDAR points cloud classification based on difference of twice return pulse heights[J].Science of Surveying and Mapping,2006,31(4):48-50.

[5] 马东洋,尚大帅,保永强.一种基于高程差粗糙度的建筑物激光脚点提取方法[J].测绘科学技术学报,2013,30(2):158-161. Ma D Y,Shang D S,Bao Y Q.A building extraction method based on roughness of height difference for airborne LiDAR point cloud data[J].Journal of Geomatics Science and Technology,2013,30(2):158-161.

[6] Zhang Z X,Zhang Y J,Zhang J G,et al.Photogrammetric modeling of linear features with generalized point photogrammetry[J].Photogrammetric Engineering and Remote Sensing,2008,74(9):1119- 1127.

[7] Yang Y,Lin Y.Object-based level set model for building detection in urban area[C]//2009 Urban Remote Sensing Joint Event.Shanghai,China:IEEE,2009.

[8] 徐宏根,王建超,郑雄伟,等.面向对象的植被与建筑物重叠区域的点云分类方法[J].国土资源遥感,2012,24(2):23-27.doi:10.6046/gtzyyg.2012.02.05. Xu H G,Wang J C,Zheng X W,et al.Object-based point clouds classification of the vegetation and building overlapped area[J].Remote Sensing for Land and Resources,2012,24(2):23-27.doi:10.6046/gtzyyg.2012.02.05.

[9] 徐文学,杨必胜,魏征,等.多标记点过程的LiDAR点云数据建筑物和树冠提取[J].测绘学报,2013,42(1):51-58. Xu W X,Yang B S,Wei Z,et al.Building and tree crown extraction from LiDAR point cloud data based on multi-marked point process[J].Acta Geodaetica et Cartographica Sinica,2013,42(1):51-58.

[10] 李峰,崔希民,袁德宝,等.利用机载LiDAR点云提取复杂城市建筑物面域[J].国土资源遥感,2013,25(3):85-89.doi:10.6046/gtzyyg.2013.03.15. Li F,Cui X M,Yuan D B,et al.Extraction of the building region from airborne LiDAR point clouds under complex urban conditions[J].Remote Sensing for Land and Resources,2013,25(3):85-89.doi:10.6046/gtzyyg.2013.03.15.

[11] 任自珍,岑敏仪,张同刚,等.基于等高线的表面估计滤波方法[J].遥感学报,2009,13(1):91-96. Ren Z Z,Cen M Y,Zhang T G,et al.Filtering method of LiDAR data based on contours[J].Journal of Remote Sensing,2009,13(1):91-96.

[12] 余烨,刘晓平,Buckles B P.基于数据融合的居民区建筑物重建方法研究[J].电子学报,2014,42(2):250-256. Yu Y,Liu X P,Buckles B P.Residential building reconstruction based on data fusion[J].Acta Electronica Sinica,2014,42(2):250-256.

[13] 谢瑞,程效军,管海燕.机载激光扫描与航空影像的融合分类与精度分析[J]. 同济大学学报:自然科学版,2013,41(4):607- 613. Xie R,Cheng X J,Guan H Y.Classification and accuracy analysis of LiDAR and aerial images[J].Journal of Tongji University:Natural Science,2013,41(4):607-613.

[14] 李云帆,龚威平,林俞先,等.LiDAR点云与影像相结合的建筑物轮廓信息提取[J].国土资源遥感,2014,26(2):54-59.doi:10.6046/gtzyyg.2014.02.10. Li Y F,Gong W P,Lin Y X,et al.The extraction of building boundaries based on LiDAR point cloud data and imageries[J].Remote Sensing for Land and Resources,2014,26(2):54-59.doi:10.6046/gtzyyg.2014.02.10.

[15] Zhang K Q,Chen S C,Whitman D,et al.A progressive morphological filter for removing nonground measurements from airborne LiDAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):872-882.

[16] 李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报,2008,12(4):633-639. Li Y,Wu H Y.Filtering airborne LiDAR data based on morphological gradient[J].Journal of Remote Sensing,2008,12(4):633-639.

[17] Pfeifer N,Stadler P,Briese C.Derivation of digital terrain models in the SCOP++ environment[C]//OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models.Stockholm,2001.

[18] Axelsson P.Processing of laser scanner data algorithms and applications[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2/3):138-147.

[19] Shao Y C,Chen L C.Automated searching of ground points from airborne LiDAR data using a climbing and sliding method[J].Photogrammetric Engineering and Remote Sensing,2008,74(5):625-635.

[20] Chehata N,David N,Bretar F.LiDAR data classification using hierarchical K-Means clustering[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2008,37(Part B3b):325-330.

[21] Zhang J,Li L L,Lu Q P,et al.Contour clustering analysis for building reconstruction from LiDAR data[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2008,37(Part B3b):355-360.

[22] Li L L,Zhang J,Jiang W S.Automatic complex building reconstruction from LiDAR based on hierarchical structure analysis[C]//MIPPR 2009:Pattern Recognition and Computer Vision,74961J.Yichang,China:SPIE,2009.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] MENG Dan, LIU Lingtong, GONG Huili, LI Xiaojuan, JIANG Bowu. Coupling and coordination relationships between urbanization and ecological environment along the Beijing-Hangzhou Grand Canal[J]. Remote Sensing for Natural Resources, 2021, 33(4): 162-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech