Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (3) : 84-91     DOI: 10.6046/gtzyyg.2015.03.15
Technology and Methodology |
Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data
XU Jianhui1, SHU Hong1, LI Yang2
1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
2. Institute of Desert Meteorology, CMA, Urumqi 830002, China
Download: PDF(6891 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  To accurately map the spatial-temporal variability of snow depth in Northern Xinjiang, the authors analyzed the spatial autocorrelation of monthly mean snow depths of 48 meteorological stations from December 2006 to January 2007, and investigated the relationship between snow depth, longitude, latitude and elevation. A multivariate nonlinear regression Kriging (MNRK) model based on the MODIS snow cover data is proposed to predict the spatial patterns of monthly mean snow depth. Relative to the ordinary Kriging (OK) and CoKriging with elevation (CoK) as covariate, the relative root mean square error(RRMSE) of predicted snow depth decreased by 15.14% and 9.54% in December, and decreased by 4.8% and 6.7% in January. The comparative results show that the MNRK method outperforms the other two methods. Integrating more information related to snow depth, the MNRK method is more efficient in capturing more spatial details of snow depth which varies with longitude, latitude and elevation. The CoK method without significantly correlated covariate produces worse results than the OK method.
Keywords high-resolution remote sensing image(HRI)      image segmentation      spectral mergence      edge mergence      road extraction     
:  TP751  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Tengfei
LI Hongyu
QU Zhongyi
Cite this article:   
SU Tengfei,LI Hongyu,QU Zhongyi. Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 84-91.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.03.15     OR     https://www.gtzyyg.com/EN/Y2015/V27/I3/84
[1] 李江风.新疆气候[M].北京:气象出版社,1991. Li J F.Climate of Xinjiang[M].Beijing:China Meteorological Press,1991.
[2] Huang X D,Liang T G,Zhang X T,et al.Validation of MODIS snow cover products using Landsat and ground measurements during the 2001-2005 snow seasons over northern Xinjiang,China[J].International Journal of Remote Sensing,2011,32(1):133-152.
[3] Liang T G,Huang X D,Wu C X,et al.An application of MODIS data to snow cover monitoring in a pastoral area:A case study in Northern Xinjiang,China[J].Remote Sensing of Environment,2008,112(4):1514-1526.
[4] 侯小刚.基于多源数据的阿勒泰地区积雪深度研究[D].新疆:新疆师范大学,2013. Hou X G.Study of Snow Depth Based on Multi-Source Data About Aletai Area[D].Xinjiang:Xinjiang Normal University,2013.
[5] 白淑英,史建桥,沈渭寿,等.近30年西藏雪深时空变化及其对气候变化的响应[J].国土资源遥感,2014,26(1):144-151.doi:10.6046/gtzyyg.2014.01.25. Bai S Y,Shi J Q,Shen W S,et al.Spatial-temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years[J].Remote Sensing for Land and Resources,2014,26(1):144-151.doi:10.6046/gtzyyg.2014.01.25.
[6] Wang X W,Xie H J,Liang T G.Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang,China[J].Remote Sensing of Environment,2008,112(4):1497-1513.
[7] 卢新玉,王秀琴,崔彩霞,等.基于AMSR-E的北疆地区积雪深度反演[J].冰川冻土,2013,35(1):40-47. Lu X Y,Wang X Q,Cui C X,et al.Snow depth retrieval based on AMSR-E data in Northern Xinjiang Region,China[J].Journal of Glaciology and Geocryology,2013,35(1):40-47.
[8] Dai L Y,Che T,Wang J,et al.Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang,China[J].Remote Sensing of Environment,2012,127:14-29.
[9] 徐倩,刘志辉,房世峰.融雪期积雪深度高光谱反演方法研究[J].光谱学与光谱分析,2013,33(7):1927-1931. Xu Q,Liu Z H,Fang S F.Retrieval method for estimating snow depth using hyperspectral data in snowmelt period[J].Spectroscopy and Spectral Analysis,2013,33(7):1927-1931.
[10] McCreight J L,Slater A G,Marshall H P,et al.Inference and uncertainty of snow depth spatial distribution at the kilometre scale in the Colorado Rocky Mountains:The effects of sample size,random sampling,predictor quality,and validation procedures[J].Hydrological Processes,2014,28(3):933-957.
[11] Erxleben J,Elder K,Davis R.Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains[J].Hydrological Processes,2002,16(18):3627-3649.
[12] Balk B,Elder K.Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed[J].Water Resources Research,2000,36(1):13-26.
[13] López-Moreno J I,Nogués-Bravo D.A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees[J].Hydrological Processes,2005,19(16):3167-3176.
[14] 刘艳,阮惠华,张璞,等.利用MODIS数据研究天山北麓Kriging雪深插值[J].武汉大学学报:信息科学版,2012,37(4):403-405. Liu Y,Ruan H H,Zhang P,et al.Kriging interpolation of snow depth at the north of Tianshan Mountains assisted by MODIS data[J].Geomatics and Information Science of Wuhan University,2012,37(4):403-405.
[15] 冯学智,柏延臣,史正涛,等.北疆地区积雪深度的克里格内插估计[J].冰川冻土,2000,22(4):358-361. Feng X Z,Bo Y C,Shi Z T,et al.Snow depth in North Xinjiang region estimated by Kriging interpolation[J].Journal of Glaciology and Geocryology,2000,22(4):358-361.
[16] Hengl T,Heuvelink G B M,Stein A.A generic framework for spatial prediction of soil variables based on regression-Kriging[J].Geoderma,2004,120(1/2):75-93.
[17] 崔彩霞,杨青,王胜利.1960-2003年新疆山区与平原积雪长期变化的对比分析[J].冰川冻土,2005,27(4):486-490. Cui C X,Yang Q,Wang S L.Comparison analysis of the long-term variations of snow cover between mountain and plain areas in Xinjiang region from 1960 to 2003[J].Journal of Glaciology and Geocryology,2005,27(4):486-490.
[18] Getis A,Ord J K.The analysis of spatial association by use of distance statistics[J].Geographical Analysis,1992,24(3):189-206.
[19] Paul Hiemstra. Automatic interpolation package[EB/OL].(2013-08-29)[2014-05-20].http://cran.r-project.org/web/packages/automap/automap.pdf.
[20] 王秋香,魏文寿,王金明.新疆北疆最大积雪深度EOF展开场的时间变化规律[J].冰川冻土,2008,30(2):244-249. Wang Q X,Wei W S,Wang J M.Temporal variation of the maximum snow cover depth in north Xinjiang derive from EOF[J].Journal of Glaciology and Geocryology,2008,30(2):244-249.
[21] 杨青,崔彩霞,孙除荣,等.1959-2003年中国天山积雪的变化[J].气候变化研究进展,2007,3(2):80-84. Yang Q,Cui C X,Sun C R,et al.Snow cover variation during 1959-2003 in Tianshan Mountains,China[J].Advances in Climate Change Research,2007,3(2):80-84.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[3] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[4] Shicai ZHU, Xiaotong ZHAI, Zongwei WANG. Segmentation of large scale remote sensing image based on Mean Shift[J]. Remote Sensing for Land & Resources, 2020, 32(1): 13-18.
[5] Bo YU, Junjun ZHANG, Chungeng LI, Jubai AN. Automated extraction of roads from mobile laser scanning point clouds by image semantic segmentation[J]. Remote Sensing for Land & Resources, 2020, 32(1): 66-74.
[6] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[7] Dechao ZHAI, Yanan FAN, Yanan ZHOU. Multi-scale segmentation of satellite imagery by edge-incorporated weighted aggregation[J]. Remote Sensing for Land & Resources, 2019, 31(3): 36-42.
[8] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[9] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[10] Jun YANG, Jianjie PEI. An improved ICM algorithm for remote sensing image segmentation[J]. Remote Sensing for Land & Resources, 2018, 30(3): 18-25.
[11] Ye LYU, Xiangyun HU. Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 76-82.
[12] Liang LI, Lei WANG, Kai WANG, Sheng LI. A change detection method for vector map and remote sensing imagery based on object heterogeneity[J]. Remote Sensing for Land & Resources, 2018, 30(1): 30-36.
[13] ZHAO Qingping. Wide-swath SAR ice images segmentation based on Lambert’s law[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 67-71.
[14] ZHU Hongchun, HUANG Wei, LIU Haiying, ZHANG Zhongfang, WANG Bin. Research on object-oriented remote sensing change detection method based on KL divergence[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 46-52.
[15] SU Tengfei, ZHANG Shengwei, LI Hongyu. Segmentation algorithm based on texture feature and region growing for high-resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech