Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 219-224     DOI: 10.6046/gtzyyg.2017.04.33
|
Plug-in style results data quality checking system for mine remote sensing monitoring based on AE
DIAO Mingguang1, QU Di1, XUE Tao1, LI Jiancun2, ZHANG Yongqiang1
1. School of Information Engineering, China University of Geosciences(Beijing), Beijing 100083, China;
2. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(3790 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Based on an analysis of current mine remote sensing monitoring results data storage quality checking work flow, the authors have designed a results data quality checking system and implemented it for mine remote sensing monitoring, which realizes three major functions, i.e., data updating, data checking and rule customization. The plug-in GIS framework technology is used to realize the design, development, integration and test of the custom function plug-in, thus solving the problem of high coupling between the system and the functional module and greatly improving the system scalability. By using XML model-driven architecture technology, the quality inspection rule model is designed and integrated into the quality inspection system, which solves the problems of system upgrade and change of function requirements resulting from the change of quality inspection rules. Practical application shows that the system provides efficient software support for quality inspection of the storage, hence improving the efficiency of the work quality inspection and reducing the work intensity as well as the workload of the staff.
Keywords landslide disaster      GF-1      interpretation key      interpretation of remote sensing     
:  TP319  
Issue Date: 04 December 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ce
JIE Wenhui
FU Lihua
WEI Benzan
Cite this article:   
ZHANG Ce,JIE Wenhui,FU Lihua, et al. Plug-in style results data quality checking system for mine remote sensing monitoring based on AE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 219-224.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.04.33     OR     https://www.gtzyyg.com/EN/Y2017/V29/I4/219
[1] 杨金中,荆青青,聂洪峰.全国矿产资源开发状况遥感监测工作简析[J].矿产勘查,2016,7(2):359-363.
Yang J Z,Jing Q Q,Nie H F Analysis of the mineral resource development status of remote sensing monitoring in national land[J].Mineral Exploration.2016,7(2):359-363.
[2] 刁明光,薛 涛,李建存,等.基于ArcGIS的矿山遥感监测成果编制系统[J].国土资源遥感,2016,28(3):194-199.doi:10.6046/gtzyyg.2016.03.30.
Diao M G,Xue T,Li J C,et al.Production data compilation system of mine remote sensing monitoring based on ArcGIS[J].Remote Sensing for Land and Resources,2016,28(3):194-199.doi:10.6046/gtzyyg.2016.03.30.
[3] 刁明光,薛 涛,梁建东,等.矿山遥感监测属性数据复杂约束类型的描述方法[J].国土资源遥感,2016,28(4):197-201.doi:10.6046/gtzyyg.2016.04.30.
Diao M G,Xue T,Liang J D,et al.Description method for complex constraint of mine remote sensing monitoring attribute data[J].Remote Sensing for Land and Resources,2016,28(4):197-201.doi:10.6046/gtzyyg.2016.04.30.
[4] 中国国土资源航空物探遥感中心.矿山遥感监测成果数据入库要求(2016版)[Z].2016-9.
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources.Production for Data Requirements for Database of Mine Remote Sensing Monitoring(2016)[Z].2016-9.
[5] 李 勇,岳建伟.基于.NET的插件式GIS应用框架设计与实现[J].地理信息世界,2010,22(4):82-86.
Li Y,Yue J W.Design and implementation of GIS application framework based on .NET plug-in technology[J].Geomatics World,2010,22(4):82-86.
[6] 刁明光,薛 涛,李建存,等.基于地质信息元数据标准的多源空间数据管理系统[J].国土资源遥感,2013,25(1):165-170.doi:10.6046/gtzyyg.2013.01.29.
Diao M G,Xue T,Li J C,et al.The multi-source spatial data management system based on geological information metadata standard[J].Remote Sensing for Land and Resources,2013,25(1):165-170.doi:10.6046/gtzyyg.2013.01.29.
[7] 崔修涛,吴健平,张伟锋.插件式GIS的开发[J].华东师范大学学报(自然科学版),2005,21(4):51-58.
Cui X T,Wu J P,Zhang W F.Development of the plug-in GIS software[J].Journal of East China Normal University(Natural Science).2005,21(4):51-58.
[1] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[2] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[3] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[4] Zhuhong ZHANG, Baoyun WANG, Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG. River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set[J]. Remote Sensing for Land & Resources, 2020, 32(2): 54-62.
[5] Ning WANG, Jiahua CHENG, Hanye ZHANG, Hongjie CAO, Jun LIU. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 35-42.
[6] Hui YUAN, Qiming QIN, Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
[7] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[8] Xiaotong LI, Xianlin QIN, Shuchao LIU, Guifen SUN, Qian LIU. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 80-86.
[9] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[10] Yilin JIA, Wen ZHANG, Lingkui MENG. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 95-100.
[11] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[12] Jian LIAO, Xingfa GU, Yulin ZHAN, Yazhou ZHANG, Xinyu REN, Shuaiyi SHI. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
[13] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[14] Lingyu YIN, Xianlin QIN, Guifen SUN, Shuchao LIU, Xiaofeng ZU, Xiaozhong CHEN. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
[15] WANG Ruijun, DONG Shuangfa, SUN Yongbin, LI Jingyue. Remote sensing interpretation and application of the geological unit of Suolake area in Xinjiang based on GF-1 satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech