Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 102-108     DOI: 10.6046/gtzyyg.2018.01.14
Orginal Article |
Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image
Zhigang XU1,2,3(), Hongrui ZHENG1,3, Chenxi DAI1,3, Peng GAO2, Peijun DU1,3()
1. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping, and Geoinformation of China, Nanjing University, Nanjing 210023, China
2. Institute of Resource Engineering,Longyan University, Longyan 364012, China
3. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
Download: PDF(1845 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, Yongding District, where there are World Heritage Hakka Tulou and its Conservation Plan Area(Hugao region), were taken as the study area. With the purpose of analyzing the land cover and ecological environment changes in the study area from 1988 to 2014, the authors selected five Landsat images acquired in 1988, 1996, 2002, 2009, 2014 respectively to generate the land cover classification maps by using multiple classifier system and the remote sensing based ecological index (RSEI)maps by using RSEI. The change of land cover and ecological environment in the study area was obtained by the method of post classification change detection. Some conclusions have been reached: ① The land cover of the study area significantly changed during the 26 years from 1988 to 2014, and the forest, shrub and grassland and built-up land increased rapidly, while farmland, degraded land and cultivation land decreased considerably; ② RSEI is suitable for the evaluation of the ecological environment of the World Heritage Hakka Tulou; ③ The overall ecological quality of the two study areas improved year by year except for the period of 1988―1996; ④ The relationship between the land cover and the ecological environment revealed that the ecological quality improved in the degraded land at high-altitude,the slope farmland which was converted into the forest land, shrub and grassland, and became worse in the area of forest, shrub and grassland land which degraded into the area of farmland, the degraded land and the reclaimed land as well as the expansion area surrounding the urban district.

Keywords Hakka Tulou      World Cultural Heritage      land cover change      remote sensing based ecological index (RSEI)      remote sensing     
:  TP79  
  TP701  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhigang XU
Hongrui ZHENG
Chenxi DAI
Peng GAO
Peijun DU
Cite this article:   
Zhigang XU,Hongrui ZHENG,Chenxi DAI, et al. Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image[J]. Remote Sensing for Land & Resources, 2018, 30(1): 102-108.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.14     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/102
Fig.1  Landsat8 images showing Yongding district and locations of World Heritage of Hakkas Tulou
Fig.2  Land-cover classification maps of Yongding district and Hugao region
分量 计算式 说明
Wet Wet=i=16Ciρi ρi以波长递增方式依次为TM/ETM+/OLI的可见光、近红外、短波红外波段反射率; Ci的计算方法见文献[14,15,16]
NDVI NDVI=(ρNIR-ρR)/(ρNIR+ρR) ρNIRρR分别为各传感器的近红外及红色波段反射率
NDSI NDSI=(SI+IBI)/2 SI为裸土指数[17],IBI为建筑指数[18]
LST T=K2/ln(K1/L+1);
LST=T/[1+(λT/ρ)lnε]
K1K2为定标参数,其具体计算及取值见文献[19]; λ为反演温度的热红外波段的中心波长; ρ=1.438×10-2 m K; ε为比辐射率,其具体计算及取值见文献[20]
Tab.1  Formulas of various index
Fig.3  Area and area change quantities of different land-cover classes in various years in Hugao region
年份 Wet NDVI NDSI LST RSEI
全区 湖高区 全区 湖高区 全区 湖高区 全区 湖高区 全区 湖高区
1988年 分量均值 0.636 0.576 0.700 0.730 0.388 0.425 0.594 0.604 0.615 0.577
PC1荷载值 0.563 0.550 0.464 0.492 -0.569 -0.585 -0.380 -0.336
1996年 分量均值 0.627 0.546 0.681 0.650 0.427 0.504 0.484 0.567 0.594 0.507
PC1荷载值 0.512 0.526 0.500 0.495 -0.549 -0.539 -0.432 -0.434
2002年 分量均值 0.630 0.528 0.704 0.626 0.381 0.483 0.499 0.514 0.616 0.507
PC1荷载值 0.562 0.565 0.441 0.435 -0.572 -0.573 -0.403 -0.405
2009年 分量均值 0.650 0.549 0.725 0.741 0.424 0.511 0.575 0.578 0.634 0.566
PC1荷载值 0.529 0.545 0.466 0.444 -0.576 -0.577 -0.413 -0.415
2014年 分量均值 0.715 0.654 0.800 0.787 0.343 0.395 0.522 0.423 0.685 0.660
PC1荷载值 0.522 0.553 0.498 0.474 -0.560 -0.588 -0.408 -0.351
Tab.2  Changes for mean values of four components and RSEI in five years
Fig.4  Images of RSEI change detection in Yongding district and Hugao region
[1] 孟岩,赵庚星.基于卫星遥感数据的河口区生态环境状况评价——以黄河三角洲垦利县为例[J].中国环境科学,2009,29(2):163-167.
[1] Meng Y,Zhao G X.Ecological environment condition evaluation of estuarine area based on quantitative remote sensing:A case study in Kenli County[J].China Environmental Science,2009,29(2):163-167.
[2] 程晋南,赵庚星,李红,等.基于RS和GIS的土地生态环境状况评价及其动态变化[J].农业工程学报,2008,24(11):83-88.
[2] Cheng J N,Zhao G X,Li H,et al.Dynamic changes and evaluation of land ecological environment status based on RS and GIS technique[J].Transactions of the CSAE,2008,24(11):83-88.
[3] 叶有华,梁永贤,沈一青,等.《生态环境状况评价技术规范(试行)》中若干值得商榷的问题[J].热带地理,2009,29(4):404-406.
[3] Ye Y H,Liang Y X,Shen Y Q,et al.Some issues related to “technical criterion for eco-environmental status evaluation (trial implementation)”[J].Tropical Geography,2009,29(4):404-406.
[4] 廖凯涛,王成,习晓环,等.吴哥遗产地土地利用/土地覆盖变化遥感分析[J].遥感信息,2015,30(1):119-124.
[4] Liao K T,Wang C,Xi X H,et al.Land use and land cover change in Angkor heritage site based on remote sensing[J].Remote Sensing Information,2015,30(1):119-124.
[5] Wondie M,Schneider W,Melesse A M,et al.Spatial and temporal land cover changes in the Simen Mountains National Park,a world heritage site in northwestern Ethiopia[J].Remote Sensing,2011,3(4):752-766.
[6] Tomaselli V,Dimopoulos P,Marangi C,et al.Translating land cover/land use classifications to habitat taxonomies for landscape monitoring:A Mediterranean assessment[J].Landscape Ecology,2013,28(5):905-930.
[7] Nagendra H,Lucas R,Honrado J P,et al.Remote sensing for conservation monitoring:Assessing protected areas,habitat extent,habitat condition,species diversity,and threats[J].Ecological Indicators,2013,33:45-59.
[8] Svancara L K,Scott J M,Loveland T R,et al.Assessing the landscape context and conversion risk of protected areas using satellite data products[J].Remote Sensing of Environment,2009,113(7):1357-1369.
[9] Liu X P,Lao C H,Li X,et al.An integrated approach of remote sensing,GIS and swarm intelligence for zoning protected ecological areas[J].Landscape Ecology,2012,27(3):447-463.
[10] 徐涵秋. 区域生态环境变化的遥感评价指数[J].中国环境科学,2013,33(5):889-897.
[10] Xu H Q.A remote sensing index for assessment of regional ecological changes[J].China Environmental Science,2013,33(5):889-897.
[11] Du P J,Xia J S,Zhang W,et al.Multiple classifier system for remote sensing image classification:A review[J].Sensors,2012,12(4):4764-4792.
[12] Mausel P W,Kramber W J,Lee J K.Optimum band selection for supervised classification of multispectral data[J].Photogrammetric Engineering and Remote Sensing,1990,56(1):55-60.
[13] Jiang X G,Wang C Y,Wang C.Optimum band selection of hyperspectral remote sensing data[J].Arid Land Geography,2000,23(3):214-220.
[14] Crist E P.A TM tasseled cap equivalent transformation for reflectance factor data[J].Remote Sensing of Environment,1985,17(3):301-306.
[15] Huang C,Wylie B,Yang L,et al.Derivation of a tasselled cap transformation based on Landsat7 at-satellite reflectance[J].International Journal of Remote Sensing,2002,23(8):1741-1748.
[16] Baig M H A,Zhang L F,Shuai T,et al.Derivation of a tasselled cap transformation based on Landsat8 at-satellite reflectance[J].Remote Sensing Letters,2014,5(5):423-431.
[17] Rikimaru A.Landsat TM data processing guide for forest canopy density mapping and monitoring model[C]//ITTO Workshop on Utilization of Remote Sensing in Site Assessment and Planning for Rehabilitation of Logged-over Forest.Bangkok,Thailand:ITTO,1996:1-8.
[18] Xu H.A new index for delineating built-up land features in satellite imagery[J].International Journal of Remote Sensing,2008,29(14):4269-4276.
[19] NASA. Landsat7 science data users handbook[EB/OL].[2012-09-05]..
url: http://landsathandbook.gsfc.nasa.gov
[20] Nichol J.Remote sensing of urban heat islands by day and night[J].Photogrammetric Engineering and Remote Sensing,2005,71(5):613-621.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech