Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 71-78     DOI: 10.6046/gtzyyg.2019.01.10
|
Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature
Liuqing WU, Xiangyun HU()
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Download: PDF(4288 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Building detection plays an important role in urban planning, change detection, surface coverage and so on. However, in high resolution remote sensing images, buildings vary in shape, color, and size, which makes building detection a difficult problem. Therefore, this paper proposes a method based on multi-scale and multi-feature to automatically extract buildings in high resolution images: Firstly, down sampling images are used to construct Gauss pyramid model, while fixed size windows in different layers of pyramid image represent different ground areas. Then multi features are calculated which describe building characteristics by sliding windows, and multi features are fused to evaluate the saliency of building in different scales. Then the saliency of superpixels is calculated, and Otsu algorithm is used to automatically determine the threshold, and furthermore, some constraints such as the aspect ratio were combined to extract buildings accurately and automatically. Experiments were made by 0.5 m and 0.2 m high resolution remote sensing images in comparison with the markov random field model based on color and texture modeling algorithm for qualitative and quantitative comparison. The results show that the method suggested in this paper can obtain more satisfactory precision and has higher effect on building detection from high-resolution remote sensing images.

Keywords high resolution image      multi-scale      multi-feature      building detection      superpixel     
:  TP751.1  
Corresponding Authors: Xiangyun HU     E-mail: huxy@whu.edu.cn
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liuqing WU
Xiangyun HU
Cite this article:   
Liuqing WU,Xiangyun HU. Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature[J]. Remote Sensing for Land & Resources, 2019, 31(1): 71-78.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.10     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/71
Fig.1  Flow chart of proposed algorithm
Fig.2  Sketch map of multi-scale building detection by Gauss pyramid images
Fig.3  Distribution of edge points in four quadrants
Fig.4  Orthogonality of main direction of building and histogram of distribution of edge points at 12 direction bins
Fig.5  Square template with dark light around
Fig.6  Multi-scale and multi-feature fusion computing saliency map
Fig.7  Detection results and reference results of experiment 1 images
影像 算法 查准率 准确率 召回率
S1 本文算法 92.4 84.6 90.9
马尔科夫随机场 88.5 70.0 78.6
S2 本文算法 92.6 78.8 83.3
马尔科夫随机场 92.4 70.1 74.4
S3 本文算法 95.8 88.5 92.0
马尔科夫随机场 87.7 78.0 87.7
Tab.1  Comparison of detection accuracy between two algorithms of experiment 1 (%)
Fig.8  Detection result of experiment 2 image
[1] 孟瑜 . 基于3S技术的违章建筑物检测关键技术研究[D]. 北京:中国科学院遥感应用研究所, 2009.
[1] Meng Y . Key Technologies Research of Illegal Building Detection Based on 3S Technology[D]. Beijing:Institute of Remote Sensing Applications of Chinese Academy of Sciences, 2009.
[2] 徐海涛 . 遥感技术在军事地理测绘中的应用[J]. 东方教育, 2014,( 8):260.
doi: 10.3969/j.issn.2079-3111.2014.08.252 url: http://d.wanfangdata.com.cn/Periodical/dfjy201408252
[2] Xu H T . Application of remote sensing technology in military geographical mapping[J]. Oriental Education, 2014,( 8):260.
[3] 吕凤华, 舒宁, 龚龑 , 等. 利用多特征进行航空影像建筑物提取[J]. 武汉大学学报(信息科学版), 2017,42(5):656-660.
doi: 10.13203/j.whugis20140781 url: http://www.cqvip.com/QK/92848X/201705/671984309.html
[3] Lyu F H, Shu N, Gong Y , et al. Regular building extraction from high resolution image based on multilevel-features[J]. Geomatics and Information Science of Wuhan University, 2017,42(5):656-660.
[4] 谭衢霖 . 高分辨率多光谱影像城区建筑物提取研究[J]. 测绘学报, 2010,39(6):618-623.
url: http://d.wanfangdata.com.cn/Periodical/chxb201006012
[4] Tan Q L . Urban building extraction from VHR multi-spectral images using object-based classification[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(6):618-623.
[5] 徐宏根, 宋妍 . 顾及阴影信息的高分辨率遥感图像变化检测方法[J]. 国土资源遥感, 2013,25(4):16-21.doi: 10.6046/gtzyyg.2013.04.03.
doi: 10.6046/gtzyyg.2013.04.03 url: http://www.cqvip.com/QK/91397X/201304/47907947.html
[5] Xu H G, Song Y . Change detection method taking into account shadow information for high resolution remote sensing image[J]. Remote Sensing for Land and Resources, 2013,25(4):16-21.doi: 10.6046/gtzyyg.2013.04.03.
[6] 庞池海, 李光耀, 赵洁 , 等. 基于直线检测算法的卫星图片中建筑物轮廓提取[J]. 计算机应用, 2008,28(s1):190-192.
url: http://www.cqvip.com/qk/94832X/2008B06/27652007.html
[6] Pang C H, Li G Y, Zhao J , et al. Building figure extraction in satellite images based on line detection algorithm[J]. Computer Applications, 2008,28(s1):190-192.
[7] 赵传, 张保明, 陈小卫 , 等. 一种基于LiDAR点云的建筑物提取方法[J]. 测绘通报, 2017,( 2):35-39.
doi: 10.13474/j.cnki.11-2246.2017.0044 url: http://d.wanfangdata.com.cn/Periodical/chtb201702008
[7] Zhao C, Zhang B M, Chen X W , et al. A method of extracting building based on LiDAR point clouds[J]. Bulletin of Surveying and Mapping, 2017,( 2):35-39.
[8] 王雪, 李培军, 姜莎莎 , 等. 利用机载LiDAR数据和高分辨率图像提取复杂城区建筑物[J]. 国土资源遥感, 2016,28(2):106-111.doi: 10.6046/gtzyyg.2016.02.17.
doi: 10.6046/gtzyyg.2016.02.17
[8] Wang X, Li P J, Jiang S S , et al. Building extraction using airborne LiDAR data and very high resolution imagery over a complex urban area[J]. Remote Sensing for Land and Resources, 2016,28(2):106-111.doi: 10.6046/gtzyyg.2016.02.17.
[9] Vakalopoulou M, Karantzalos K, Komodakis N, et al. Building detection in very high resolution multispectral data with deep learning features [C]//Geoscience and Remote Sensing Symposium,IEEE, 2015: 1873-1876.
[10] 陈文康 . 基于深度学习的农村建筑物遥感影像检测[J]. 测绘, 2016,39(5):227-230.
doi: 10.3969/j.issn.1674-5019.2016.05.010 url: http://www.cnki.com.cn/Article/CJFDTotal-SCCH201605010.htm
[10] Chen W K . Remote sensing image detection of rural buildings based on deep learning algorithm[J]. Surveying and Mapping, 2016,39(5):227-230.
[11] Wang H Y, Pan D L, Xia D S . Fast algorithm for two-dimensional Otsu adaptive threshold algorithm[J]. Journal of Image and Graphics, 2005,33(9):968-971.
doi: 10.1360/aas-007-0968 url: http://www.ams.org/mathscinet-getitem?mr=2369584
[12] Hu X Y, Shen J J, Shan J , et al. Local edge distributions for detection of salient structure textures and objects[J]. IEEE Geoscience and Remote Sensing Letters, 2013,10(3):466-470.
doi: 10.1109/LGRS.2012.2210188 url: http://ieeexplore.ieee.org/document/6289342/
[13] Alexe B, Deselaers T, Ferrari V . Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2189-2202.
doi: 10.1109/TPAMI.2012.28 pmid: 22248633 url: http://ieeexplore.ieee.org/document/6133291/
[14] Cheng Y Z . Mean Shift,mode seeking,and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
doi: 10.1109/34.400568 url: http://ieeexplore.ieee.org/document/400568/
[15] Gu W, Lyu Z H, Hao M . Change Detection Method for Remote Sensing Images Based on An Improved Markov Random Field[M]. The Netherlands:Kluwer Academic Publishers, 2017.
[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[3] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[4] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[5] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[6] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[7] ZHANG Rui, YOU Shucheng, DU Lei, LU Jing, HE Yun, HU Yong. High-resolution remote sensing image segmentation based on improved superpixel and marker watershed[J]. Remote Sensing for Land & Resources, 2021, 33(1): 86-95.
[8] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[9] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[10] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[11] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[12] Dechao ZHAI, Yanan FAN, Yanan ZHOU. Multi-scale segmentation of satellite imagery by edge-incorporated weighted aggregation[J]. Remote Sensing for Land & Resources, 2019, 31(3): 36-42.
[13] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[14] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[15] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech