Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 73-81     DOI: 10.6046/gtzyyg.2019.02.11
|
Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area
Lixin DONG1,2,3
1.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, Beijing 100081, China
2.National Satellites Meteorological Center, Beijing 100081, China
3.The Joint Center for Satellite Research and Applications, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Download: PDF(2411 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Leaf area index (LAI) is an important structural variable for quantitative study of the energy exchange characteristics of forest ecosystems. Based on field observations of LAI, 7 kinds of vegetation indexes and 5 custom vegetation indexes based on Landsat TM, LAI estimation model of different forest types were established through the model screening, in which the multiple regression model for coniferous forest and principal component analysis model for broad-leaved forest and mixed forest were used. Finally, the regional scale forest LAI distribution map was made through multiple model estimation. The accuracy of LAI is 0.829 4, 1.111 5 and 1.790 9 for coniferous forest, broad-leaved forest and mixed forest respectively. And the total R 2 is over 0.77 for all the forests. The results will provide basic data for forest ecosystem and carbon cycle studies.

Keywords forest leaf area index      vegetation index method      principal component analysis      Three Gorges Reservoir area      remote sensing     
:  TP79  
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lixin DONG
Cite this article:   
Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.11     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/73
Fig.1  Location of study area and distribution of the field samples
植被指数 LAI
针叶林 阔叶林 混交林 总体
VI1 0.701 94 0.396 88 0.392 77 0.668 68
NDVI 0.661 74 0.376 37 0.651 81 0.702 49
SAVI 0.602 46 0.339 23 0.295 06 0.621 81
ARVI 0.569 70 0.306 31 0.283 61 0.593 52
MSAVI 0.563 19 0.342 85 0.305 82 0.605 73
SARVI 0.544 32 0.295 41 0.282 86 0.577 90
VI2 0.418 47 0.315 30 0.355 01 0.467 11
VI5 0.402 91 -0.010 50 0.322 68 0.345 46
VI4 0.377 51 0.292 58 0.328 18 0.455 33
VI3 0.352 68 0.341 50 0.176 05 0.286 66
PVI 0.347 80 0.123 51 0.072 66 0.403 55
EVI 0.346 52 0.135 54 0.039 42 0.389 16
Tab.1  Correlation between LAI and vegetation indexes of varied forest species
类型 植被指数 回归模型 R R2 标准误差 F检验 显著性系数
针叶林 VI1 Y=-2.57-8.781X 0.702 0.493 1.387 35.938 0.000
NDVI Y=-9.116+0.058X 0.662 0.438 1.398 28.825 0.000
SAVI Y=-1.937+4.952X 0.602 0.363 1.554 4.591 0.000
ARVI Y=-0.407+5.952X 0.570 0.325 1.601 17.779 0.000
MSAVI Y=-4.264+9.213X 0.563 0.317 1.609 17.188 0.000
SARVI Y=-0.426+3.36X 0.544 0.296 1.634 15.578 0.000
阔叶林 VI1 Y=0.28-9.09X 0.397 0.157 2.359 5.795 0.022
NDVI Y=1.374+7.515X 0.367 0.135 2.390 4.834 0.035
MSAVI Y=-4.659+13.441X 0.343 0.118 2.414 4.129 0.051
SAVI Y=0.335+5.762X 0.339 0.115 2.418 4.031 0.053
混交林 NDVI Y=-16.096+0.101X 0.652 0.425 2.236 10.342 0.006
VI1 Y=-1.312-10.854X 0.393 0.154 2.711 2.554 0.132
VI2 Y=0.746-9.633X 0.355 0.126 2.756 2.019 0.177
Tab.2  Univariate linear regression models between LAI and vegetation indexes of varied forest species
Fig.2  Modeling of relationship between LAI and NDVI for needle forest
模型 线性 二次多项式 复合模型 生长模型 对数模型 三次多项式 S曲线 指数模型 双曲线模型 幂指数模型
NDVI 0.438 0.518 0.345 0.345 0.420 0.517 0.317 0.345 0.401 0.332
VI1 0.493 0.596 0.410 0.410 0.446 0.589 0.323 0.410 0.395 0.369
Tab.3  R2 of nonlinear regression models between LAI and vegetation indexes (needle forest)
类型 植被指数 回归模型 R R2 标准误差 F检验 显著性系数
针叶林 VI1 Y=8.159-3.091/X 0.628 0.395 1.515 24.111 0.000
NDVI Y=14.678-2 408.372/X 0.634 0.401 1.507 24.820 0.000
SAVI Y=6.364-3.131/X 0.482 0.233 1.706 11.209 0.000
ARVI Y=4.502-0.729/X 0.361 0.130 1.816 5.552 0.000
MSAVI Y=8.432-4.165/X 0.482 0.232 1.706 11.203 0.000
SARVI Y=3.405-0.183/X 0.215 0.406 1.902 1.790 0.000
阔叶林 VI1 Y=14.647+5.554/X 0.453 0.206 2.290 8.026 0.008
NDVI Y=27.504-4 665.65/X 0.371 0.139 2.385 4.996 0.033
MSAVI Y=18.348-9.751/X 0.345 0.119 2.412 4.192 0.049
SAVI Y=13.535-7.365/X 0.345 0.119 2.412 4.195 0.049
混交林 NDVI Y=26.721-4 455.288/X 0.633 0.401 0.633 9.374 0.008
VI1 Y=15.172+6.145/X 0.394 0.155 2.709 2.576 0.131
VI2 Y=13.317+4.006/X 0.337 0.113 2.776 1.790 0.202
Tab.4  Inverse models between LAI and vegetation indexes of varied forest species
类型 多元线性回归模型 R R2 标准
误差
F检验 显著性
系数
针叶林 Y=-5.226-13.729VI1-3.693VI2+6.05VI4 0.803 0.644 1.193 9 35.93 0.000
阔叶林 Y=-4.884-12.882VI1+0.000 4EVI 0.523 0.273 2.227 0 5.642 0.008
混交林 Y=-16.092+0.101NDVI 0.652 0.425 2.235 8 10.342 0.006
Tab.5  Multivariate linear regression models between LAI and vegetation indexes of varied forest species
类型 C1 C2 C3 C4
针叶林 VI1 VI3 PVI EVI
阔叶林 VI1 EVI PVI NDVI
混交林 VI1 EVI PVI NDVI
Tab.6  PCA of different forest types
植被类型 主成分分量 特征值 方差贡献/% 累积贡献/%
针叶林 C1 7.319 45 61.00 61.00
C2 2.588 47 21.57 82.57
C3 0.745 39 6.21 88.78
C4 0.538 48 4.49 93.26
阔叶林 C1 7.402 98 61.69 61.69
C2 2.479 73 20.66 82.36
C3 0.907 83 7.57 89.92
C4 0.672 17 5.60 95.52
混交林 C1 6.524 52 54.37 54.37
C2 3.970 18 33.08 87.46
C3 0.752 40 6.27 93.73
C4 0.576 63 4.81 98.53
Tab.7  Contribution rate of each PCA component
类型 主成分回归模型 R R2 标准误差 F检验 显著性系数 数量
针叶林 Y=-2.760-11.095C1+0.016C2-0.063C3+0.001C4 0.766 0.587 1.306 11 12.064 0.000 39
阔叶林 Y=-14.964-10.586C1+0.001C2-0.027C3+0.056C4 0.571 0.326 2.220 30 3.383 0.022 33
混交林 Y=-15.991-6.114C1+0.001C2-0.056C3+0.092C4 0.670 0.449 2.469 35 2.239 0.131 16
Tab.8  PCA regression models between LAI and vegetation indexes of varied forest species
Fig.3  Result of LAI in Three Gorges Reservoir area
Fig.4  Comparison predicted LAI with measuremed LAI for different forest types
[1] Chen J M, Black T A . Foliage area and architecture of clumped plant canopies from sunfleck size distributions[J]. Agricultural and Forest Meteorology, 1992,60(3-4):249-266.
doi: 10.1016/0168-1923(92)90040-B url: https://linkinghub.elsevier.com/retrieve/pii/016819239290040B
[2] Gower S T, Kucharik C J, Norman J M . Direct and indirect estimation of leaf area index,FAPAR,and net primary production of terrestrial ecosystems[J]. Remote Sensing of Environment, 1999,70(1):29-51.
doi: 10.1016/S0034-4257(99)00056-5 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425799000565
[3] Chen J, Cihlar J . Retrieving leaf area index of Boreal Conifer Forest using Landsat TM images[J]. Remote Sensing of Environment, 1996,55:153-162.
doi: 10.1016/0034-4257(95)00195-6 url: https://linkinghub.elsevier.com/retrieve/pii/0034425795001956
[4] Geol N S, Rozehnal I . A High-level Language for L-systems and Its Application[M]. New York:Springer-Verlag, 1992: 231-251.
[5] Chen X X, Vierling L, Rowell E . Using LiDAR and effective LAI data to evaluate IKONOS and Landsat7 ETM+ vegetation cover estimates in a ponderosa pine forest[J]. Remote Sensing of Environment, 2004,91(1):14-26.
doi: 10.1016/j.rse.2003.11.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425703003419
[6] 朱高龙, 居为民, 范文义 , 等. 帽儿山地区森林冠层叶面积指数的地面观测与遥感反演[J]. 应用生态学报, 2010,21(8):2127-2124.
[6] Zhu G L, Ju W M, Fan W Y , et al. Forest canopy leaf area index in Maoershan Mountain:Ground measurement and remote sensing retrieval[J]. Chinese Journal of Applied Ecology, 2010,21(8):2127-2124.
[7] 刘婧怡, 汤旭光, 常守志 , 等. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014,29(1):18-25.
doi: doi:10.11873/j.issn.1004\|0323.2014.1.0018
[7] Liu J Y, Tang X G, Chang S Z , et al. Application of remote sensing to inverse the forest leaf area index and regional estimation[J]. Remote Sensing Technology and Application, 2014,29(1):18-25.
[8] 韩婷婷, 习晓环, 王成 , 等. 基于TM数据的西双版纳地区森林叶面积指数反演[J]. 遥感信息, 2014,29(2):28-32.
[8] Han T T, Xi X H, Wang C , et al. Forest leaf area index inversion based on TM data in Xishuangbanna Area[J]. Remote Sensing Information, 2014,29(2):28-32.
[9] 刘振波, 刘杰 . 森林冠层叶面积指数遥感反演——以小兴安岭五营林区为例[J]. 生态学杂志, 2015,34(7):1930-1936.
[9] Liu Z B, Liu J . Retrieving forest canopy LAI from remote sensing data:A case study over Wuying forest in the Lesser Khingan[J]. Chinese Journal of Ecology, 2015,34(7):1930-1936.
[10] 姚雄, 余坤勇, 杨玉洁 , 等. 基于随机森林模型的林地叶面积指数遥感估算[J]. 农业机械学报, 2017,48(5):159-166.
[10] Yao X, Yu K Y, Yang Y J , et al. Estimation of forest leaf area index based on random forest model and remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(5):159-166.
[11] 张瀛, 孟庆岩, 武佳丽 , 等. 基于环境星CCD数据的环境植被指数及叶面积指数反演研究[J]. 光谱学与光谱分析, 2011,31(10):2789-2793.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ111109000207JfMiPl
[11] Zhang Y, Meng Q Y, Wu J L , et al. Study of environmental vegetation index based on environment satellite CCD data and LAI inversion[J]. Spectroscopy and Spectral Analysis, 2011,31(10):2789-2793.
[12] Colombo R, Bellingeri D, Fasolini D , et al. Retrieval of leaf index in different vegetation types using high resolution satellite data[J]. Remote Sensing Environment, 2003,86:120-131.
doi: 10.1016/S0034-4257(03)00094-4 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425703000944
[13] Fensholt R . Earth observation of vegetation status in the Sahelian and Sudanian Weat Africa:Comparison of Terra MODIS and NOAA AVHRR satellite data[J]. International Journal of Remote Sensing, 2004,25(9):1641-1659.
doi: 10.1080/01431160310001598999 url: https://www.tandfonline.com/doi/full/10.1080/01431160310001598999
[14] Pu R L, Gong P . Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping[J]. Remote Sensing of Environment, 2004,91:212-224.
doi: 10.1016/j.rse.2004.03.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425704000811
[15] Vaesen K, Gilliams S, Nackaerets K , et al. Ground-measured spectral signatures as indicators of ground cover and leaf area index:The case of paddy rice[J]. Field Crops Research, 2001,69(1):13-25.
doi: 10.1016/S0378-4290(00)00129-5 url: https://linkinghub.elsevier.com/retrieve/pii/S0378429000001295
[16] Franklin S E, Lavigne M B, Deuling M J , et al. Estimation of forest leaf area index using remote sensing and GIS data for modeling net primary production[J]. International Journal of Remote Sensing, 1997,18(16):3459-3471.
doi: 10.1080/014311697216973 url: https://www.tandfonline.com/doi/full/10.1080/014311697216973
[17] Kuusk A . Monitoring of vegetation parameters on large areas by the inversion of a canopy reflectance model[J]. International Journal of Remote Sensing, 1998,19(15):2893-2905.
doi: 10.1080/014311698214334 url: https://www.tandfonline.com/doi/full/10.1080/014311698214334
[18] 陈丽, 张晓丽, 焦志敏 . 基于混合像元分解模型的森林叶面积指数反演[J]. 农业工程学报, 2013,29(13):124-129.
[18] Chen L, Zhang X L, Jiao Z M . Reversion of leaf area index in forest based on linear mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(13):124-129.
[19] Suits G H . The calculation of the directional reflectance of vevetative canopy[J]. Remote Sensing of Environment, 1972,2:117-125.
[20] Kuusk A . The hot spot effect of a uniform vegetative cover[J]. Soviet Journal of Remote Sensing, 1985,3:645-658.
[21] Li X W, Strahler A H .Geometric-optical modeling of conifer forest canopy[J].IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(5):705-721.
doi: 10.1109/TGRS.1985.289389 url: http://ieeexplore.ieee.org/document/4072365/
[22] Li X W, Strahler A H . Geometric-optical bidirectional reflectance modeling of a coniferous forest canopy[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986,24(6):906-919.
[23] Jupp D L B, Walker J, Penridge L K . Interpretation of vegetation structure in Landsat MSS imagery:A case study in disturbed semi-aric eucalypt woodland.Part2. Model-based analysis[J]. Journal of Environmental Management, 1986,23:35-57.
[24] Li X W, Strahler A H . Geometric-optical bidirectional reflectance modeling of the discrete-crown vegetation canopy:Effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(2):276-292.
doi: 10.1109/36.134078 url: http://ieeexplore.ieee.org/document/134078/
[25] Li X W, Strahler A H . Modeling the gap probability of a discontinuous vegetation canopy[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988,26(2):161-170.
doi: 10.1109/36.3017 url: http://ieeexplore.ieee.org/document/3017/
[26] Li X W, Strahler A H, Woodcock C E . A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(2):466-480.
doi: 10.1109/36.377947 url: http://ieeexplore.ieee.org/document/377947/
[27] 吴富祯 . 测树学[M]. 北京: 中国林业出版社, 1992.
[27] Wu F Z. Tree Measuring[M]. Beijing: China Forestry Publishing House, 1992.
[28] 冯宗炜, 王效科, 吴刚 . 中国森林生态系统的生物量和生产力[M]. 北京: 科学出版社, 1999.
[28] Feng Z W, Wang X K, Wu G. Biomass and Productivity of Forest Ecosystems in China[M]. Beijing: Science Press, 1999.
[29] Hodgson M E, Shelley B M . Removing the topographic effect in remotely sensed imagery[J]. ERDAS Monitor, 1994,6:4-6.
[30] 张磊, 董立新, 吴炳方 , 等. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007,16(1):107-112.
[30] Zhang L, Dong L X, Wu B F , et al. Land cover change before and after the construction of Three Gorges Reservoir within 10 years[J]. Resources and Environment in the Yangtze Basin, 2007,16(1):107-112.
[31] 董立新, 吴炳方, 郭振华 , 等. 三峡库区农林用地变化遥感监测及模拟预测[J]. 农业工程学报, 2009,25(s2):290-297.
[31] Dong L X, Wu B F, Guo Z H , et al. Remote sensing monitoring and simulation prediction of agricultural and forestry land use in Three Gorges Reservoir area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(s2):290-297.
[32] 陈述彭, 童庆禧, 郭华东 , 等. 遥感信息机理研究[M]. 北京: 科学出版社, 1998.
[32] Chen S P, Tong Q X, Guo H D , et al. Research on the Mechanism of Remote Sensing Information[M]. Beijing: Science Press, 1998.
[33] Duncan J , Stow JD A V,Franklin JJ ,et al..Assessing the relationship between spectral vegetation indices and shrub cover in the Jornada Basin,New Mexico[J]. International Journal of Remote Sensing, 1993,14(18):3395-3416.
doi: 10.1080/01431169308904454 url: https://www.tandfonline.com/doi/full/10.1080/01431169308904454
[34] Rouse J W, Haas R W, Schell J A , et al. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation[R]. Greenbelt:NASA, 1974.
[35] Richardson A J, Wiegand C L . Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing, 1977,43(12):1541-1552.
[36] Huete A R . A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988,25(3):295-309.
doi: 10.1016/0034-4257(88)90106-X url: https://linkinghub.elsevier.com/retrieve/pii/003442578890106X
[37] Purevdor J T S, Tateishi R, Ishiyama T , et al. Relationships between percent vegetation cover and vegetation indices[J]. International Journal of Remote Sensing, 1998,19(18):3519-3535.
doi: 10.1080/014311698213795 url: https://www.tandfonline.com/doi/full/10.1080/014311698213795
[38] Clevers J G P W . The application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil-background[J]. Remote Sensing of Environment, 1989,29:25-37.
doi: 10.1016/0034-4257(89)90076-X url: https://linkinghub.elsevier.com/retrieve/pii/003442578990076X
[39] Kaufman Y J, Tanre D . Atmospherically resistant vegetation index (ARVI) for EOS MODIS[J]. IEEE Transactions Geoscience and Remote Sensing, 1992,30(2):261-270.
doi: 10.1109/36.134076 url: http://ieeexplore.ieee.org/document/134076/
[40] Pu R L, Gong P. Hyperspectral Remote Sensing and Its Application[M]. Beijing: Higher Education Press, 2000.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[11] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[12] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[13] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[14] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[15] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech