Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 115-119     DOI: 10.6046/gtzyyg.2020.01.16
|
Mining intensity analysis of each administrative region in Tibet based on remote sensing
Haiqing WANG1, Jianting HAO2, Li LI1, Na AN1, Wenjia XU1, Yaqiu YIN1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Tibet Institute of Geological Survey, Lhasa 850000, China
Download: PDF(786 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Mining intensity can reflect the centralized distribution of mineral resources exploitation and provide a basis for decision-making about mineral resources planning, overall planning of local economic development, etc. The mining occupation and destruction land of each administrative region in Tibet were surveyed by field investigation and information extraction from remote sensing data acquired in 2016 and 2017. The mining intensity and changes of each administrative region in 2016 and 2017 were analyzed on the basis of the results of remote sensing investigation. The results show that, for mining intensity, five counties with the highest intensity include Maizhokunggar County, Doilungdeqen District, Dagze County, Chengguan District and Zhongba County. From 2016 to 2017, for mining intensity changes, five counties with the highest increasing mining intensity were Zhanang County, Maizhokunggar County, Doilungdeqen District Sangzhuzi District and Nedong County, whereas the county with most weakening mining was Chengguan District.

Keywords Tibet      mineral resources      mining intensity      occupation and destruction land      remote sensing     
:  P627  
  TP79  
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haiqing WANG
Jianting HAO
Li LI
Na AN
Wenjia XU
Yaqiu YIN
Cite this article:   
Haiqing WANG,Jianting HAO,Li LI, et al. Mining intensity analysis of each administrative region in Tibet based on remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(1): 115-119.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.16     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/115
序号 行政区 2016年正在利用的矿
产资源开发占损土
地面积/km2
2017年正在利用的矿
产资源开发占损土
地面积/km2
行政区域
国土面积/
km2
2016年开采
强度/10-4
2017年开采
强度/10-4
2016—2017
年开采强度
变化/10-4
1 拉萨市 22.106 5 23.297 1 约3万 7.068 6 7.449 3 0.380 7
1.1 城关区 0.334 7 0.271 8 525.00 6.375 2 5.177 1 -1.198 1
1.2 堆龙德庆区 2.825 3 3.253 5 4 099.94 6.891 1 7.935 5 1.044 4
1.3 林周县 1.591 2 1.597 1 12 234.45 1.300 6 1.305 4 0.004 8
1.4 当雄县 0.603 6 0.623 2 3 265.99 1.848 1 1.908 2 0.060 1
1.5 尼木县 0.721 1 0.727 5 1 623.94 4.440 4 4.479 8 0.039 4
1.6 曲水县 1.087 1 1.173 3 2 671.64 4.069 0 4.391 7 0.322 7
1.7 达孜县 1.014 4 1.078 8 1 361.38 7.451 3 7.924 3 0.473 0
1.8 墨竹工卡县 13.929 1 14.571 9 5 492.00 25.362 5 26.533 0 1.170 5
2 日喀则市 27.550 1 28.518 4 约18万 1.586 7 1.642 4 0.055 8
3 昌都市 6.593 2 7.477 5 约11万 0.600 1 0.680 6 0.080 5
4 林芝市 2.571 1 2.543 2 约12万 0.224 4 0.221 9 -0.002 4
5 山南市 5.021 3 5.753 8 约8万 0.636 4 0.729 3 0.092 8
6 那曲地区 3.897 5 4.993 4 约36万 0.110 6 0.141 7 0.031 1
7 阿里地区 13.779 6 13.953 7 约34万 0.408 8 0.414 0 0.005 2
合计 81.519 3 86.537 1 约123万
Tab.1  Mining intensity list
[1] 中华人民共和国国土资源部. 2017中国矿产资源报告[M]. 北京: 地质出版社, 2017: 14-20.
[1] Ministry of Land and Resources People’s Republic of China. 2017 China Mineral Resources[M]. Beijing: Geological Publishing House, 2017: 16-24.
[2] 中华人民共和国国土资源部. 2016中国矿产资源报告[M]. 北京: 地质出版社, 2016: 15-22.
[2] Ministry of Land and Resources People’s Republic of China. 2016 China Mineral Resources[M]. Beijing: Geological Publishing House, 2016: 17-26.
[3] 中华人民共和国国土资源部. 2015中国矿产资源报告[M]. 北京: 地质出版社, 2015: 13-18.
[3] Ministry of Land and Resources People’s Republic of China. 2015 China Mineral Resources[M]. Beijing: Geological Publishing House, 2015: 14-21.
[4] 中华人民共和国国土资源部. 2014中国矿产资源报告[M]. 北京: 地质出版社, 2014: 13-17.
[4] Ministry of Land and Resources People’s Republic of China. 2014 China Mineral Resources[M]. Beijing: Geological Publishing House, 2014: 15-20.
[5] 中华人民共和国国土资源部. 2013中国矿产资源报告[M]. 北京: 地质出版社, 2013: 11-14,32.
[5] Ministry of Land and Resources People’s Republic of China. 2013 China Mineral Resources[M]. Beijing: Geological Publishing House, 2013: 13-17,39.
[6] 中华人民共和国国土资源部. 2012中国矿产资源报告[M]. 北京: 地质出版社, 2012: 20-29.
[6] Ministry of Land and Resources People’s Republic of China. 2012 China Mineral Resources[M]. Beijing: Geological Publishing House, 2012: 22-32.
[7] 路云阁, 李春霖, 刘采 , 等. 西藏东部地区矿产资源开发状况及其评价[J]. 生态与农村环境学报, 2016,32(3):379-382.
[7] Lu Y G, Li C L, Liu C , et al. Status of exploitation of mineral resources in east Tibet and its evaluation[J]. Journal of Ecology and Rural Environment, 2016,32(3):379-382.
[8] 何芳, 徐友宁, 乔冈 , 等. 中国矿山环境地质问题区域分布特征[J]. 中国地质, 2010,37(5):1520-1529.
[8] He F, Xu Y N, Qiao G , et al. Regional distribution characteristics of mine environmental geological problems in China[J]. Geology in China, 2010,37(5):1520-1529.
[9] 杨金中, 聂洪峰, 王海庆 , 等. 中国矿山地质环境遥感监测(2015年)[M]. 北京: 地质出版社, 2017: 1-22.
[9] Yang J Z, Nie H F, Wang H Q , et al. Remote sensing monitoring of mine geological environmental in China (2015)[M]. Beijing: Geological Publishing House, 2017: 1-22.
[10] 杨金中, 王昊, 董双发 , 等. 中国矿山地质环境遥感监测(2016年)[M]. 北京: 地质出版社, 2018: 1-15.
[10] Yang J Z, Wang H, Dong S F , et al. Remote sensing monitoring of mine geological environmental in China (2016)[M]. Beijing: Geological Publishing House, 2018: 1-15.
[11] 王海庆, 陈玲 . 山东省济宁市煤矿矿集区地面沉陷现状遥感调查[J]. 中国地质灾害与防治学报, 2011,22(1):87-93.
[11] Wang H Q, Chen L . Investigation of current surface subsidence situation using remote sensing images,in Jining coal mine concentration area,Shandong Province[J]. The Chinese Journal of Geological Hazard and Control, 2011,22(1):87-93.
[12] 王海庆, 聂洪峰, 陈玲 , 等. 采矿沉陷遥感调查与危害性研究[J]. 国土资源遥感, 2016,28(1):114-121.doi: 10.6046/gtzyyg.2016.01.17.
[12] Wang H Q, Nie H F, Chen L , et al. Remote sensing investigation of mining subsidence and harmfulness research[J]. Remote Sensing for Land and Resources, 2016,28(1):114-121.doi: 10.6046/gtzyyg.2016.01.17.
[13] 王海庆, 杨金中, 陈玲 , 等. 采煤沉陷区恢复治理状况遥感调查[J]. 国土资源遥感. 2017,29(3):156-162.doi: 10.6046/gtzyyg.2017.03.13.
[13] Wang H Q, Yang J Z, Chen L , et al. Remote sensing investigation of restoration and management situation in coal mine subsidence areas[J]. Remote Sensing for Land and Resources, 2017,29(3):156-162.doi: 10.6046/gtzyyg.2017.03.13.
[14] 王海庆, 武明德, 刘琼 , 等. 山西某地矿业开发占用土地状况遥感监测[J]. 国土资源遥感, 2018,30(1):1-5.doi: 10.6046/gtzyyg.2018.01.16.
[14] Wang H Q, Wu M D, Liu Q , et al. Remote sensing monitoring of mining land in a certain area of Shanxi Province[J]. Remote Sensing for Land and Resources, 2018,30(1):1-5.doi: 10.6046/gtzyyg.2018.01.16.
[15] 王海庆, 陈玲 . 西藏日喀则矿山环境恢复治理效果分析[J]. 矿业研究与开发, 2018,38(10):111-114.
[15] Wang H Q, Chen L . Effectiveness analysis on mine environment rehabilitation in Shigatse of Tibet[J]. Mining Research and Development, 2018,38(10):111-114.
[16] 汪洁, 李迁, 李丽 , 等. 资源一号02C卫星在江西重点矿区开发监测中的应用[J]. 国土资源信息化, 2018,(1):24-28.
[16] Wang J, Li Q, Li L , et al. Application of the resource No.1 02C satellite in development and monitoring of key mining areas in Jiangxi Province[J]. Land and Resources Information, 2018,(1):24-28.
[17] 于博文, 田淑芳, 赵永超 , 等. 高分一号卫星在京津矿山遥感监测中的应用[J]. 现代地质, 2017,31(4):843-850.
[17] Yu B W, Tian S F, Zhao Y C , et al. Application of GF-1 satellite in remote sensing monitoring on mine exploitation in Beijing and Tianjin[J]. Geoscience, 2017,31(4):843-850.
[18] 邓莹 . 基于国产卫星在矿山集中区矿山地质环境中的应用研究[J]. 安徽地质, 2017,7(2):121-123,126.
[18] Deng Y . Domestic satellite-based remote sensing technology applied in study of geological environment of a concentrated area of mines[J]. Geology of Anhui, 2017,7(2):121-123,126.
[19] 马国胤, 谈树成, 赵志芳 . 基于高分辨率遥感影像的矿山遥感监测解译标志研究[J]. 云南地理环境研究, 2017,29(5):59-68.
[19] Ma G Y, Tan S C, Zhao Z F . The interpretation mark of mine monitoring based on high-resolution remote sensing images[J]. Yunnan Geographic Environment Research, 2017,29(5):59-68.
[20] 郝利娜, 张志, 何文熹 , 等. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
[20] Hao L N, Zhang Z, He W X , et al. Tailings reservoir recognition factors of the high resolution remote sensing image in southeastern Hubei[J]. Remote Sensing for Land and Resources, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
[21] 杨金中, 聂洪峰, 荆青青 . 初论全国矿山地质环境现状与存在问题[J]. 国土资源遥感, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
[21] Yang J Z, Nie H F, Jing Q Q . Preliminary analysis of mine geo-environment status and existing problems in China[J]. Remote Sensing for Land and Resources, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
[22] 王晓红, 荆青青, 周英杰 , 等. 山东省采煤沉陷遥感动态监测[J]. 国土资源遥感, 2017,29(3):203-210.doi: 10.6046/gtzyyg.2017.03.30.
[22] Wang X H, Jing Q Q, Zhou Y J , et al. Remote sensing dynamic monitoring of coal mine subsidence disaster in Shandong Province[J]. Remote Sensing for Land and Resources, 2017,29(3):203-210.doi: 10.6046/gtzyyg.2017.03.30.
[23] 鱼磊, 李应真, 高俊华 , 等. 基于高分卫星遥感数据的冀东地区矿山开发现状及环境问题研究[J]. 中国地质调查, 2018,5(4):90-98.
[23] Yu L, Li Y Z, Gao J H , et al. Research on the current situation of mine exploitation and environmental problems based on the satellite remote sensing data in eastern Hebei[J]. Geological Survey of China, 2018,5(4):90-98.
[24] 王昊, 李丽, 刘雪 , 等. 新疆东北地区矿产资源开发环境遥感监测成果[J]. 中国地质调查, 2018,5(3):81-88.
[24] Wang H, Li L, Liu X , et al. Remote sensing investigation of mineral resources development environment in northeastern Xinjiang[J]. Geological Survey of China, 2018,5(3):81-88.
[25] 蒋劲, 李洁, 郭栋 , 等. 山西省矿山占地遥感监测[J]. 华北国土资源, 2017,(3):86-89,115.
[25] Jiang J, Li J, Guo D , et al. Remote sensing dynamic monitoring of mine occupation and destruction land in Shanxi Province[J]. Huabei land and Resources, 2017,(3):86-89,115.
[26] 杨显华, 黄洁, 田立 , 等. 四川省矿产资源动态监测新进展及成果应用[J]. 中国科技成果, 2018,(8):78-79.
[26] Yang X H, Huang J, Tian L , et al. New investigation and application of remote sensing dynamic monitoring of mineral resources in Sichuan Province[J]. China Science and technology achievements, 2018,(8):78-79.
[27] 强建华, 于浩 . 新疆矿山环境遥感监测成果综述[J]. 中国地质调查, 2016,3(5):28-34.
[27] Qiang J H, Yu H . Review on remote sensing monitoring results of mine geological environment in Xinjiang[J]. Geological Survey of China, 2016,3(5):28-34.
[28] 路云阁, 王昊, 刘采 . 西藏东部地区矿产资源开发环境遥感监测成果[J]. 中国地质调查, 2016,3(5):35-40.
[28] Lu Y G, Wang H, Liu C . Review of remote sensing investigation of mineral resources development status in eastern Tibet[J]. Geological Survey of China, 2016,3(5):35-40.
[29] 高永志, 初禹, 梁伟 . 黑龙江省矿集区尾矿库遥感监测与分析[J]. 国土资源遥感, 2015,27(1):160-163.doi: 10.6046/gtzyyg.2015.01.25.
[29] Gao Y Z, Chu Y, Liang W . Remote sensing monitoring and analysis of tailings ponds in the ore concentration area of Heilongjiang Province[J]. Remote Sensing for Land and Resources, 2015,27(1):160-163.doi: 10.6046/gtzyyg.2015.01.25.
[30] 杨汉水, 袁鑫宇, 薛广垠 , 等. 七台河市矿山地质环境遥感调查及评价分析[J]. 黑龙江工程学院学报, 2018,32(1):27-30.
[30] Yang H S, Yuan X Y, Xue G Y , et al. Remote sensing investigation and evaluation analysis of mine geological environment in Qitaihe[J]. Journal of Heilongjiang Institute of Technology, 2018,32(1):27-30.
[31] 周英杰, 王晓红, 姚维岭 , 等. 山东省尾矿库遥感调查与环境影响分析[J]. 中国地质调查, 2017,4(4):88-92.
[31] Zhou Y J, Wang X H, Yao W L , et al. Remote sensing investigation and environmental impact analysis of tailing ponds in Shandong Province[J]. Geology Survey of China, 2017,4(4):88-92.
[32] 强建华 . 陕西省尾矿库遥感调查与环境影响分析[J]. 金属矿山, 2013,42(10):112-115.
[32] Qiang J H . Remote sensing investigation and environmental impact analysis of tailing dams in Shaanxi Province[J]. Metal Mine, 2013,42(10):112-115.
[33] 方雪娟, 丁镭, 张志 . 大冶陈贵镇小型尾矿库分布特征及环境影响分析[J]. 国土资源遥感, 2013,25(1):155-159.doi: 10.6046/gtzyyg.2013.01.27.
[33] Fang X J, Ding L, Zhang Z . An analysis of distribution characteristics and environmental effect of small tailing ponds in Chengui town,Daye[J]. Remote Sensing for Land and Resources, 2013,25(1):155-159.doi: 10.6046/gtzyyg.2013.01.27.
[34] 星球地图出版社. 西藏自治区地图集[M]. 北京: 星球地图出版社,2017:2,10,26,48,72,88,108,142.
[34] Star Map Publishing House. Atlas of Tibet Autonomous Region[M]. Beijing: Star Map Publishing House,2017:2,10,26,48,72,88,108,142.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech