Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 121-128     DOI: 10.6046/gtzyyg.2020.03.16
|
A study of the landscape fragmentations of land cover structure based on Landsat8 remote sensing image: A case study of Mata watershed in Yan’an, Shaanxi Province
LI Guoqing1,2(), HUANG Jinghua1,2, LIU Guan3, LI Jie3, ZHAI Bochao3, DU Sheng1,2
1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100,China
2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100, China
3. College of Forestry, Northwest A&F University, Yangling 712100, China
Download: PDF(2057 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The process of landscape fragmentation is accompanied by the decline of landscape function. Therefore, the study of landscape fragmentation is of great significance for timely monitoring of ecological security and adjustment of land cover structure. This research was designed to map the current status of land cover structure of Mata watershed using supervised classification algorithms in south of Yan’an City based on Landsat 8 satellite data and to describe its landscape fragmentation using six fragmentation indices at three organization levels: patch, class, and landscape. The results are as follows: ① The status of land cover in this area can be characterized accurately based on Landsat8 satellite image and the accuracy of supervised classification is 74% together with the kappa value of 0.68; ② Mata watershed can be classified into 6 land cover classes, i.e., forest land, shrub land, grass land, orchards land, farm land, and others land (road and village). The orchard land occupies the largest area in all land cover types; ③ The extent of landscape fragmentation for shrub, grass and farm lands is relatively more serious than that of forest, orchard and others lands, indicating that landscape functions of shrub, grass and farm lands have been weakened in capability of ecological protection and agricultural production; ④ Transforming small patches of shrub, grass and farm lands into adjacent land type with large patches should improve the integration level of landscape in the Mata watershed, which is conducive to the improvement of landscape function in Mata watershed.

Keywords landscape fragmentation      land cover      remote sensing image      random forest      Mata watershed     
:  TP79  
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guoqing LI
Jinghua HUANG
Guan LIU
Jie LI
Bochao ZHAI
Sheng DU
Cite this article:   
Guoqing LI,Jinghua HUANG,Guan LIU, et al. A study of the landscape fragmentations of land cover structure based on Landsat8 remote sensing image: A case study of Mata watershed in Yan’an, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 121-128.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.16     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/121
Fig.1  Location of mata watershed in Yan’an City
层次 指标 描述 单位
斑块层次 斑块面积 斑块面积 hm2
景观要素层次 斑块数量 景观要素斑块的个数
斑块密度 景观要素斑块数量除以景观要素斑块面积 个/hm2
平均斑块面积 景观要素总面积除以景观要素斑块数量 hm2
香农多样性 反映景观要素内所有斑块的多样性
景观
层次
斑块数量 景观斑块的个数
斑块密度 景观斑块数量除以景观斑块面积 个/hm2
最大斑块指数 景观最大斑块面积除以景观总面积 %
香农多样性 反映景观内所有斑块的多样性
Tab.1  Indices of landscape fragmentation and their descriptions
Fig.2  Sensitivity and specificity indices of 6 land uses in random forest and maximum likelihood models
Fig.3  Land covers map and their corresponding area size in mata watershed
Fig.4  Frequency map for logarithmic area of landscape patches in mata watershed
土地类型 斑块数量/
斑块密度/
(个·hm-2)
平均斑块
面积/hm2
香农多样性
森林 9 0.40 2.50 0.89
灌木 35 1.20 0.84 3.08
草地 39 0.75 1.32 2.27
果园 11 0.09 11.04 0.63
农田 22 2.61 0.38 2.69
其他 11 1.01 1.00 2.05
Tab.2  Fragmentation indices of landscape classes in mata watershed
指标 数值 单位
斑块数量 127
斑块密度 0.52 个/hm2
最大斑块指数 42.57 %
香农多样性 2.83
Tab.3  Fragmentation indices of landscape in mata watershed
Fig.5  Functional relationship between sensitivity index and landscape fragmentation index
[1] 马克明, 傅伯杰. 北京东灵山地区景观格局及破碎化评价[J]. 植物生态学报, 2000,24(3):320-326.
url: http://www.plant-ecology.com/CN/abstract/abstract10161.shtml
[1] Ma K M, Fu B J. Landscape pattern and fragmentation in Donglingshan Mountain region[J]. Acta Phytoecologica Sinica, 2000,24(3):320-326.
[2] 洪鸿加, 彭晓春, 陈志良, 等. 长沙市景观破碎化时空分异特征研究[J]. 国土资源遥感, 2011,23(1):133-137.doi: 10.6046/gtzyyg.2011.01.27.
doi: 10.6046/gtzyyg.2011.01.27 url: http://www.gtzyyg.com/CN/abstract/abstract610.shtml
[2] Hong H J, Peng X C, Chen Z L, et al. The investigation of spatiotemporal patterns of landscape fragmentation during rapid urbanization in Changsha City[J]. Remote Sensing for Land and Resources, 2011,23(1):133-137.doi: 10.6046/gtzyyg.2011.01.27.
[3] Nagendra H, Munroe D K, Southworth J. From pattern to process:Landscape fragmentation and the analysis of land use/land cover change[J]. Agriculture Ecosystems & Environment, 2004,101(2-3):111-115.
[4] 邬建国. 景观生态学——格局、过程、尺度与等级[M]. 北京: 高等教育出版社, 2000.
[4] Wu J G. Landscape ecology:Pattern,process,scale and hierarchy[M]. Beijing: Higher Education Press, 2000.
[5] 王宪礼, 肖笃宁, 布仁仓, 等. 辽河三角洲湿地的景观格局分析[J]. 生态学报, 1997,17(3):317-323.
url: http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=970316&flag=1
[5] Wang X L, Xiao D N, Bu R C, et al. Analysis on landscape patterns of Liaohe delta wetland[J]. Acta Ecologica Sinica, 1997,17(3):317-323.
[6] Ferreira I J M, Bragion G D, Ferreira J H D, et al. Landscape pattern changes over 25 years across a hotspot zone in southern Brazil[J]. Southern Forests, 2019,81(2):175-184.
doi: 10.2989/20702620.2018.1542563 url: https://www.tandfonline.com/doi/full/10.2989/20702620.2018.1542563
[7] Wang B, Li J, Jin X F, et al. Mapping tea plantations from multi-seasonal landsat-8 OLI imageries using a random forest classifier[J]. Journal of the Indian Society of Remote Sensing, 2019,47(8):1315-1329.
doi: 10.1007/s12524-019-01014-5 url: https://doi.org/10.1007/s12524-019-01014-5
[8] 魏彦昌, 吴炳方, 张喜旺, 等. 基于高分辨率影像的景观格局定量分析[J]. 国土资源遥感, 2009,21(2):76-81,86.doi: 10.6046/gtzyyg.2009.02.16.
doi: 10.6046/gtzyyg.2009.02.16 url: http://www.gtzyyg.com/CN/abstract/abstract42.shtml
[8] Wei Y C, Wu B F, Zhang X W, et al. A quantitative analysis of the landscape pattern based on high resolution satellite image[J]. Remote Sensing for Land and Resources, 2009,21(2):76-81,86.doi: 10.6046/gtzyyg.2009.02.16.
[9] 徐涵秋, 唐菲. 新一代landsat系列卫星:Landsat8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013,33(11):3249-3257.
doi: 10.5846/stxb201305030912 url: http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201305030912&flag=1
[9] Xu H Q, Tang F. Analysis of new characteristics of the first Landsat8 image and their ecoenvironmental significance[J]. Acta Ecologica Sinica, 2013,33(11):3249-3257.
doi: 10.5846/stxb url: http://www.ecologica.cn/
[10] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
[10] Zhao Y S. Principles and methods of remote sensing for applied anaysis[M]. Beijing: Science Press, 2003.
[11] 王敏, 高新华, 陈思宇, 等. 基于Landsat 8遥感影像的土地利用分类研究——以四川省红原县安曲示范区为例[J]. 草业科学, 2015,32(5), 694-701.
doi: 10.11829\j.issn.1001-0629.2014-0263 url: http://cykx.lzu.edu.cn/CN/abstract/abstract11113.shtml
[11] Wang M, Gao X H, Chen S Y, et al. The land use classification based on Landsat8 remote sensing image:A case study of Anqu demonstration community in Hongyuan County of Sichuan Province[J]. Pratacultural Science, 2015,32(5):694-701.
doi: 10.11829\j.issn.1001-0629.2014-0263 url: http://cykx.lzu.edu.cn/CN/abstract/abstract11113.shtml
[12] 许伟, 奚砚涛. 基于Landsat8遥感影像的合肥市土地利用分类[J]. 湖北农业科学, 2015,54:3625-3629,3637.
[12] Xu W, Xi Y T. Research on land use classification in Hefei based on Landsat8 images[J]. Hubei Agricultural Science, 2015,54(15):3625-3629,3637.
[13] 李国庆, 张晓芹, 杜盛. 基于随机森林模型的黄土高原林草界线模拟研究[J]. 中国科技论文, 2017,12(15):1780-1784.
[13] Li G Q, Zhang X Q, Du S. Simulating the boundary of forest and grass on the Loess Plateau based on random forest model[J]. China Sciencepaper, 2017,12(15):1780-1784.
[14] 杜盛, 刘国彬. 黄土高原植被恢复的生态功能[M]. 北京: 科学出版社, 2015.
[14] Du S, Liu G B. Ecological functions of vegetation restoration on the loess plateau[M]. Beijing: Science Press, 2015.
[15] 买凯乐, 张文辉. 黄土丘陵沟壑区遥感影像信息面向对象分类方法提取[J]. 农业机械学报, 2011,42(4):153-158.
[15] Mai K L, Zhang W H. Object oriented classification approach for remote sensing imagery information extraction in loess hilly gully region[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011,42(4):153-158.
[16] 谭莹, 徐军亮, 毛华英. 基于landsat8影像的植被信息提取最佳波段组合研究——以浙江省龙泉市为例[J]. 华东森林经理, 2019,33:71-76.
[16] Tan Y, Xu J L, Mao H Y. Research of optimum bands combination for vegetation information extraction based on Landsat8 image:A case study of Longquan City,Zhejiang Province[J]. East China Forest Management, 2019,33(2):71-76.
[17] 张金龙, 常胜. Landsat8影像在土地利用分类中的最大波段组合研究——以湖北恩施市为例[J]. 湖北民族学院学报(自然科学版), 2015,33(4):467-470.
[17] Zhang J L, Chang S. Optimum bands combination of Landsat8 image in land use classification:A case study of Enshi City,Hubei Province[J]. Journal of Hubei University for Nationalities(Natural Science Edition), 2015,33(4):467-470.
[18] 侯晓瑞, 薛志婧, 程曼, 等. 黄土丘陵区纸坊沟小流域土壤有机碳储量研究[J]. 水土保持通报, 2012,32(2):21-25.
[18] Hou X R, Xue Z J, Cheng M, et al. Soil organic carbon storage in Zhifanggou watershed of loess hilly region[J]. Bulletin of Soil and Water Conservation, 2012,32(2):21-25.
[19] Breiman L. Random forests[J]. Machine Learning, 2001,45:5-32.
doi: 10.1023/A:1010933404324 url: http://www.springerlink.com/content/u0p06167n6173512/
[20] 魏娜思. 基于高分影像的林地覆盖遥感动态监测[J]. 信息通信, 2019,3:19-22.
[20] Wei N S. Dynamic sensing remote monitoring of forest cover based on high resolution images[J]. Information and Communications, 2019,3:19-22.
[21] Thomas N, Hanna M, Florian D, et al. Satellite:Manipulating satellite data with satellite[EB/OL]. 2016, URL,https://cran.r-project.org/web/packages/satellite/index.html.
url: https://cran.r-project.org/web/packages/satellite/index.html
[22] Li G Q, Du S, Wen Z M. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale[J]. Scientific Reports, 2016,6:30009.doi: 10.1038/srep30009.
doi: 10.1038/srep30009 pmid: 27443221 url: https://www.ncbi.nlm.nih.gov/pubmed/27443221
[23] Stockwell D, Peters D. The GARP modelling system:Problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information Science, 1999,13(2):143-158.
doi: 10.1080/136588199241391 url: http://www.tandfonline.com/doi/abs/10.1080/136588199241391
[24] Hijmans R J. Raster:Geographic data analysis and modeling.R package version 2.5-8 2016.https://CRAN.R-project.org/package=raster.
url: https://CRAN.R-project.org/package=raster
[25] Mcgannon K R, Marks B J. FRAGSTATS:Spatial pattern analysis program for quantifying landscape structure[R].U.S.Department of Agriculture,Forest Service, Pacific Northwest Research Station, 1995.
[26] 王斌, 刘华, 张硕新, 等. 秦岭火地唐林区景观格局破碎化分析[J]. 中国农学通报, 2005,21(10):111-113,143.
url: http://www.casb.org.cn/CN/abstract/abstract16077.shtml
[26] Wang B, Liu H, Zhang S X, et al. Study on landscape fragmentation of Qinling huoditang forest region[J]. Chinese Agricultural Science Bulletin, 2005,21(10):111-113,143.
url: http://www.casb.org.cn/CN/abstract/abstract16077.shtml
[27] Vanderwal J, Falconi L, Januchowski S, et al.SDMTools:Species distribution modelling tools:tools for processing data associated with species distribution modelling exercises.R package version 1.1-221[EB/OL].2014. https://CRAN.R-project.org/package=SDMTools.
url: https://CRAN.R-project.org/package=SDMTools
[28] Araujo M B, New M. Ensemble forecasting of species distributions[J]. Trends in Ecology & Evolution, 2007,22(1):42-47.
doi: 10.1016/j.tree.2006.09.010 pmid: 17011070 url: https://www.ncbi.nlm.nih.gov/pubmed/17011070
[29] Desmet P G. Using landscape fragmentation thresholds to determine ecological process targets in systematic conservation plans[J]. Biological Conservation, 2018,221:257-260.
doi: 10.1016/j.biocon.2018.03.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0006320717308613
[30] Minor E S, Tessel S M, Engelhardt K A M, et al. The role of landscape connectivity in assembling exotic plant communities:A network analysis[J]. Ecology, 2009,90(7):1802-1809.
pmid: 19694129 url: https://www.ncbi.nlm.nih.gov/pubmed/19694129
[31] Brassil C E. Mean time to extinction of a metapopulation with an Allee effect[J]. Ecological Modelling, 2001,143(1-2):9-16.
doi: 10.1016/S0304-3800(01)00351-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0304380001003519
[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] FANG Mengyang, LIU Xiaohuang, KONG Fanquan, LI Mingzhe, PEI Xiaolong. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
[3] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[8] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[9] LIU Zhizhong, SONG Yingxu, YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192-199.
[10] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[11] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[12] LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
[13] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[14] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[15] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech