Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 1-8     DOI: 10.6046/gtzyyg.2020068
|
Present status and perspectives of remote sensing survey of glacial lakes in High Asia
PAN Meng1(), CAO Yungang1,2()
1. Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University, Chengdu 611756,China
2. State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Railway Safety, Southwest Jiaotong University, Chengdu 611756, China
Download: PDF(3574 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

High Asia is one of the regions with the most concentrated distribution of glacial lakes in the world, and the use of remote sensing technology to carry out glacial lake research in this region is of great significance for global change analysis and natural disaster assessment. This paper refers to a large number of domestic and foreign research literature and reports, comprehensively reviews the development process of data sources and information extraction methods for remote sensing data extraction of high Asian glacial lakes, and further analyzes the spatial and temporal changes of glacial lakes and their responses to global changes. The current research progress and main achievements of the research on the high Asian glacial lake in China and abroad are analyzed in detail. Finally, combined with the latest development of remote sensing mechanism, image processing technology and remote sensing data source, the development trend of high-spatial-resolution remote sensing in glacial lake related research fields is predicted.

Keywords remote sensing      glacial lake      High Asia      spatio-temporal change      climate change     
ZTFLH:  TP79  
Corresponding Authors: CAO Yungang     E-mail: 17828176816@163.com;yungang@swjtu.cn
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng PAN
Yungang CAO
Cite this article:   
Meng PAN,Yungang CAO. Present status and perspectives of remote sensing survey of glacial lakes in High Asia[J]. Remote Sensing for Land & Resources, 2021, 33(1): 1-8.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020068     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/1
Fig.1  Study country distribution of High Asia glacial lake in 1990—2019
Fig.2  Research results and citation quantity trend of High Asia glacial lake in 1990—2019
Fig.3  WordCloud of key words in High Asia glacial lake research
Fig.4  Statistics of the number of research papers on glacial lakes in different regions of High Asia
Fig.5  Glacial lake information ground survey technology and equipment
卫星/传感器 空间分
辨率/m
重访周
期/d
发射时间
MODIS Terra/aqua 250 1 1999-12/2002-05
Landsat MSS 80 18 1972-07/1975-01/1978-03/1982-07/1984/03
Landsat TM 30 16 1982-07/1984-03
Landsat ETM+ 30(全色15) 16 1999-04
Landsat OLI 16 16 2013-02
SPOT 1-4 20 26 1986-02/1990-01/1993-09
SPOT 5 10 5 2002-05
IKONOS 4(全色1) 3 1999-09
RESOURCESAT-1(LISS 3) 23.5(全色5.8) 24 2013-7
QuickBird 2.44 1-6 2001-10
ASTER 15 16 1999-12
Sentinel-1 5 12 2014-04
Sentinel-2 10 10 2015-06
GF-1 8(全色2) 4 2013-04
GF-2 4(全色1) 5 2014-08
Tab.1  List of satellites/sensors used for glacial lake monitoring
区域/流域 时段/年 前一期面
积/km2
后一期面
积/km2
年平均面积变
化/(km2·a-1)
年平均面积变
化率/(%·a-1)
参考文献
阿尔泰山 1992—2013 205.796 235.825 1.430 0.690 [32]
北天山 1990—2010 15.89±2.90 19.53±3.43 0.182 1.150 [33]
西天山 1990—2010 7.37±1.11 9.15±1.42 0.089 1.210 [33]
中央天山 1990—2010 37.38±4.67 39.05±4.99 0.084 0.230 [33]
东天山 1990—2010 22.08±3.19 28.79±4.39 0.336 1.520 [33]
西昆仑山(塔里木盆地) 1990—2013 6.98±1.10 8.92±1.19 0.084 1.210 [2]
喀喇昆仑山(塔里木盆地) 1990—2013 14.74±1.13 16.81±1.09 0.090 0.609 [2]
阿尔金山(塔里木盆地) 1990—2013 1.00±0.33 1.55±0.38 0.024 2.390 [2]
帕米尔高原(塔里木盆地) 1990—2013 78.01±2.74 86.07±2.67 0.350 0.449 [2]
藏东南 1988—2013 85.58 93.65 0.323 0.377 [36]
横断山 1990—2014 248.9±29.9 255.8±31.6 0.288 0.117 [1]
喜马拉雅山 1990—2015 398.9±65.3 455.3±72.7 2.256 0.570 [30]
Tab.2  Results of glacial lake spatiotemporal change in the major mountains on the High Asia
Fig.6  Thematic map of glacial lake change around the 21st century in different regions of High Asia
[1] Wang X, Chai K, Liu S, et al. Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan,southeastern Tibetan Plateau[J]. Journal of Glaciology, 2017,63(239):535-542.
[2] Wang X, Liu Q, Liu S, et al. Heterogeneity of glacial lake expansion and its contrasting signals with climate change in Tarim Basin,Central Asia[J]. Environmental Earth Sciences, 2016,75(8):696.
[3] Merzbacher G. The Central Tian-Shan Mountains 1902-1903[M]. London:J Murray, 1905.
[4] Zhang M, Chen F, Tian B. Glacial lake detection from GaoFen-2 multispectral imagery using an integrated nonlocal active contour approach:A case study of the Altai Mountains,Northern Xinjiang Province[J]. Water, 2018,10(4):455.
[5] Zhang G, Yao T, Xie H, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change, 2015,131:148-157.
[6] Xu Q H, Liu D M, Feng C H. Dagerous glacial lake and outburst featuresin Xizang Himalayas[J]. Acta Geographica Sinica, 1989,44(3):343-352.
[7] 杨成德, 王欣, 魏俊锋, 等. 2015 年中国西部冰湖编目数据集[J/OL]. 中国科学数据, 2018,3(4).2018-06-28.doi: 10.11922/csdata.2018.0038.zh.
[7] Yang C D, Wang X, Wei J F, et al. A dataset of glacial lake inventory of West China in 2015[J/OL]. China Science Data, 2018,3(4).2018-06-28.doi: 10.11922/csdata.2018.0038.zh.
[8] Wang X, Guo X Y, Yang C D, et al. Glacial lake inventory of High Mountain Asia[J]. National Cryosphere and Desert Scientific Data Center, 2019.doi: 10.12072/casnw.064.2019.db.
[9] Frey H, Huggel C, Paul F, et al. Automated detection of glacier lakes based on remote sensing in view of assessing associated hazard potentials[J]. Grazer Schriften der Geographie und Raumforschung, 2010,45:261-272.
[10] 王欣, 吴坤鹏, 蒋亮虹, 等. 近20年天山地区冰湖变化特征[J]. 地理学报, 2013,68(7):983-993.
[10] Wang X, Wu K P, Jiang L H, et al. Wide expansion of glacial lakes in Tianshan Mountains during 1990-2010[J]. Acta Geographica Sinica, 2013,68(7):983-993.
[11] Raj G, Babu K, Kumar V K, et al. Remote sensing-based inventory of glacial lakes in Sikkim Himalaya:Semi-automated approach using satellite data[J]. Geomatics,Natural Hazards and Risk, 2013,4(3):241-253.
[12] 张波, 张瑞, 刘国祥, 等. 基于SAR影像的贡巴冰川末端冰湖年际变化监测及溃决规律分析[J]. 武汉大学学报信息科学版, 2019,44(7):1054-1064.
[12] Zhang B, Zhang R, Liu G X, et al. Monitoring of interannual variabilities and outburst regularities analysis of glacial lakes at the end of Gongba glacier utilizing SAR images[J]. Geomatics and Information Science of Wuhan University, 2019,44(7):1054-1064.
[13] Mitkari K V, Arora M K, Tiwari R K. Extraction of glacial lakes in gangotri glacier using object-based image analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(12):5275-5283.
[14] Jain S K, Sinha R K, Chaudhary A, et al. Expansion of a glacial lake,Tsho Chubda,Chamkhar Chu Basin,Hindukush Himalaya,Bhutan[J]. Natural Hazards, 2015,75(2):1451-1464.
[15] Bulley H N N, Bishop M P, Shroder J F, et al. Integration of classification tree analyses and spatial metrics to assess changes in supraglacial lakes in the Karakoram Himalaya[J]. International Journal of Remote Sensing, 2013,34(2):387-411.
[16] Li J, Sheng Y. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models:A case study in the Himalayas[J]. International Journal of Remote Sensing, 2012,33(16):5194-5213.
[17] Zhao H, Chen F, Zhang M. A systematic extraction approach for mapping glacial lakes in high mountain regions of Asia[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(8):2788-2799.
[18] Chen F, Zhang M, Tian B, et al. Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth Engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(9):4002-4009.
[19] Zhang M, Chen F, Tian B. Glacial lake detection from GaoFen-2 multispectral imagery using an integrated nonlocal active contour approach:A case study of the Altai mountains,northern Xinjiang Province[J]. Water, 2018,10(4):455.
[20] Veh G, Korup O, Roessner S, et al. Detecting Himalayan glacial lake outburst floods from Landsat time series[J]. Remote Sensing of Environment, 2018,207:84-97.
[21] Bhardwaj A, Singh M K, Joshi P K, et al. A lake detection algorithm (LDA) using Landsat 8 data:A comparative approach in glacial environment[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,38:150-163.
[22] Cook S J, Quincey D J. Estimating the volume of Alpine glacial lakes[J]. Earth Surface Dynamics Discussions, 2015,3(3):909-940.doi: 10.5194/esurfd-3-909-2015
[23] Yao X J, Liu S, Sun M, et al. Volume calculation and analysis of the changes in moraine-dammed lakes in the north Himalaya:A case study of Longbasaba lake[J]. Journal of Glaciology, 2012,58(210):753-760.
[24] Yang R M, Zhu L P, Wang Y J, et al. Study on the variations of lake area & volume and their effect on the occurrence of outburst of MUDUI glacier lake in southeastern Tibet[J]. Progress in Geography, 2012,31(9):1133-1140.
[25] Song C, Sheng Y. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis[J]. Climatic Change, 2016,135(3-4):493-507.
[26] Cook S J, Quincey D J. Estimating the volume of Alpine glacial lakes. Earth Surface Dynamics Discussions, 2015,3(3):909-940.
[27] Zhe M, Zhang X, Wang B, et al. Hydrochemical regime and its mechanism in Yamzhog Yumco Basin,South Tibet[J]. Journal of Geographical Sciences, 2017,27(9):1111-1122.
[28] Yan H M, Yao Z, Huang H, et al. Water quality and light absorption attributes of glacial lakes in Mount Qomolangma region[J]. Journal of Geographical Sciences, 2013,23(5):860-870.
[29] 闫露霞, 孙美平, 姚晓军, 等. 青藏高原湖泊水质变化及现状评价[J]. 环境科学学报, 2018,38(3):900-910.
[29] Yan L X, Sun M P, Yao X J, et al. Lake water in the Tibet Plateau:Quality change and current status evaluation[J]. Acta Sci Circumst, 2018,38(3):900-910.
[30] Salerno F, Rogora M, Balestrini R, et al. Glacier melting increases the solute concentrations of Himalayan glacial lakes[J]. Environmental Science & Technology, 2016,50(17):9150-9160.
doi: 10.1021/acs.est.6b02735 pmid: 27466701 url: https://www.ncbi.nlm.nih.gov/pubmed/27466701
[31] 王欣, 刘时银, 莫宏伟, 等. 我国喜马拉雅山区冰湖扩张特征及其气候意义[J]. 地理学报, 2011,66(7):895-904.
[31] Wang X, Liu S Y, Mo H W, et al. Expansion of glacial lakes and its implication for climate changes in the Chinese Himalaya[J]. Acta Geographica Sinica, 2011,66(7):895-904.
[32] Nie Y, Sheng Y, Liu Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017,189:1-13.
[33] 舒梅海. 近25年阿尔泰山区冰川冰湖变化及特征[D]. 湘潭:湖南科技大学, 2017.
[33] Shu M H. Variations and characters of glacier and glacial Lakesin Altai Mountains in recent 25 years[D]. Xiangtan:Hunan University of Science and Technology, 2017.
[34] 吴坤鹏. 天山冰湖变化及其影响研究[D]. 湘潭:湖南科技大学, 2014.
[34] Wu K P. The change of glacial lake and its influence in Tianshan Mountains[D]. Xiangtan:Hunan University of Science and Technology, 2014.
[35] Gardelle J, Arnaud Y, Berthier E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009[J]. Global and Planetary Change, 2011,75(1-2):47-55.
[36] Nie Y, Sheng Y, Liu Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017,189:1-13.
doi: 10.1016/j.rse.2016.11.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716304382
[37] Song C, Sheng Y, Ke L, et al. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes[J]. Journal of Hydrology, 2016,540:504-514.
[38] Hasnain S I. Impact of climate change on Himalayan glaciers and glacier lakes [C]// Proc. Taal 2007:The 12th World Lake Conf. 2008: 1088-1091.
[39] Wu S, Yao Z, Huang H, et al. Responses of glaciers and glacial lakes to climate variation between 1975 and 2005 in the Rongxer basin of Tibet,China and Nepal[J]. Regional Environmental Change, 2012,12(4):887-898.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[5] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[6] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[7] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[8] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[9] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[10] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[11] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[12] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[13] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[14] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[15] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech