Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 82-88     DOI: 10.6046/zrzyyg.2021032
|
A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network
LI Yikun1,2(), YANG Yang1, YANG Shuwen1,2,3, WANG Zihao1
1. Faculty of Geomatics,Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
Download: PDF(3223 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The change vector analysis in posterior probability space (CVAPS) method has been widely used in the change detection of remote sensing images owing to its many advantages. It uses the support vector machine (SVM) to estimate the posterior probability vector. However, in the classification of low and medium resolution remote sensing images, SVM cannot effectively deal with the problems of the same object with the different spectra, different objects with the same spectrum, and mixed pixels and thus cannot guarantee the accuracy of the final detection results. Therefore, this paper adopts the fuzzy c-means (FCM) clustering for modeling and couples the FCM with a simple Bayesian network (SBN) to solve the problem of mixed pixels and estimate the posterior probability vector, thus achieving a new posterior probability space change vector analysis method. The experimental results indicate that, compared to the SVM-based CVAPS algorithm, the algorithm proposed in this study shows higher overall accuracy, higher Kappa coefficient, more reliable performance that is less affected by the number of training samples, simpler parameter setting, and lower time consumption. Therefore, the algorithm proposed in this paper helps to improve the accuracy and efficiency of the change detection of remote sensing images.

Keywords remote sensing image      change detection      change vector analysis in posterior probability space      fuzzy C-means clustering      simple Bayesian network     
ZTFLH:  TP79  
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yikun LI
Yang YANG
Shuwen YANG
Zihao WANG
Cite this article:   
Yikun LI,Yang YANG,Shuwen YANG, et al. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021032     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/82
Fig.1  Simple Bayesian network
Fig.2  Change detection model coupling fuzzy C-means clustering and Bayesian network
Fig.3  Comparison examples of change detection algorithms in the study area
Fig.4  The Kappa coefficient of FCM-SBN-CVAPS algorithm based on different clustering number and fuzzy parameter q
Fig.5  Effects of different number of training pixels on the Kappa coefficients of FCM-SBN-CVAPS and SVM-CVAPS algorithms
算法 参数 错检
率/%
漏检
率/%
总体精
度/%
Kappa
系数
FCM-SBN-CVAPS 50聚类
q=3.5
1 000训
练样本
20.38 16.59 97.40 0.801 0
FCM-SBN-PCC 54.06 15.65 92.02 0.554 8
SVM-CVAPS cp=13
gamma=3
5 000训
练样本
38.97 19.79 95.07 0.666 9
SVM-PCC 73.28 10.59 82.22 0.340 9
Tab.1  The performance evaluation of change detection algorithms
[1] 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003,28(s1):7-12.
[1] Li D R. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003,28(s1):7-12.
[2] Coppin P, Jonckheere I, Nackaerts K, et al. Digital change detection methods in ecosystem monitoring:A review[J]. International Journal of Remote Sensing, 2004,25(9):1565-1596.
doi: 10.1080/0143116031000101675 url: https://www.tandfonline.com/doi/full/10.1080/0143116031000101675
[3] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synjournal of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015,160:1-14.
doi: 10.1016/j.rse.2015.01.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715000152
[4] 王艳恒, 高连如, 陈正超, 等. 结合深度学习和超像元的高分遥感影像变化检测[J]. 中国图象图形学报, 2020,25(6):1271-1282.
[4] Wang Y H, Gao L R, Chen Z C, et al. Deep learning and superpixel-based method for high-resolution remote sensing image change detection[J]. Journal of Image and Graphics, 2020,25(6):1271-1282.
[5] Singh A. Digital change detection techniques using remote sensed data[J]. International Journal of Remote Sensing, 1989,10(6):989-1003.
doi: 10.1080/01431168908903939 url: https://www.tandfonline.com/doi/full/10.1080/01431168908903939
[6] Yetgin Z. Unsupervised change detection of satellite images using local gradual descent[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(5):1919-1929.
doi: 10.1109/TGRS.2011.2168230 url: http://ieeexplore.ieee.org/document/6059501/
[7] 郝明, 史文中, 邓喀中. 空间信息准确性增强遥感变化检测[M]. 北京: 测绘出版社, 2017.
[7] Hao M, Shi W Z, Deng K Z. Remote sensing change detection based on enhanced spatial information[M]. Beijing: Surveying and Mapping Press, 2017.
[8] Chen J, Chen X, Cui X, et al. Change vector analysis in posterior probability space:A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(2):317-321.
doi: 10.1109/LGRS.2010.2068537 url: http://ieeexplore.ieee.org/document/5597922/
[9] 蔡怤晟, 向泽君, 蔡衡, 等. 结合特征选择的CVA多尺度遥感影像变化检测[J]. 测绘通报, 2020(8):101-104.
[9] Cai F S, Xiang Z J, Cai H, et al. CVA multi-scale remote sensing image change detection combined with feature selection[J]. Bulletin of Surveying and Mapping, 2020(8):101-104.
[10] 张春森, 吴蓉蓉, 李国君, 等. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020,32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
doi: 10.6046/gtzyyg.2020.02.03
[10] Zhang C S, Wu R R, Li G J, et al. High resolution remote sensing image object change detection based on box-plotmethod[J]. Remote Sensing for Land and Resources, 2020,32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
doi: 10.6046/gtzyyg.2020.02.03
[11] 王昶, 张永生, 王旭, 等. 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报(工学版), 2020,54(11):2138-2148.
[11] Wang C, Zhang Y Y, Wang X, et al. Remote sensing image change detection method based on deep neural networks[J]. Journal of Zhejiang University (Engineering Science), 2020,54(11):2138-2148.
[12] Daschiel H, Datcu M. Design and evaluation of human-machine communication for image information mining[J]. IEEE Transactions on Multimedia, 2005,7(6):1036-1046.
doi: 10.1109/TMM.2005.858383 url: http://ieeexplore.ieee.org/document/1542081/
[13] Ichoku C, Karnieli A. A review of mixture modeling techniques for sub-pixel land cover estimation[J]. Remote Sensing Reviews, 1996,13(3-4):161-186.
[14] 胡玉玺, 李轶鲲, 杨萍. 基于上下文敏感的贝叶斯网络及方向关系的遥感图像检索[J]. 国土资源遥感, 2017,29(3):70-76.doi: 10.6046/gtzyyg.2017.03.10.
doi: 10.6046/gtzyyg.2017.03.10
[14] Hu Y X, Li Y K, Yang P. Retrieving of remote sensing images based on content-sensitive Bayesian networks and direction relations[J]. Remote Sensing for Land and Resources, 2017,29(3):70-76.doi: 10.6046/gtzyyg.2017.03.10.
doi: 10.6046/gtzyyg.2017.03.10
[15] Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision,Graphics,and Image Processing, 1985,29:273-285.
doi: 10.1016/0734-189X(85)90125-2 url: https://linkinghub.elsevier.com/retrieve/pii/0734189X85901252
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[4] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[5] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[6] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[7] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[8] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[9] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[10] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[11] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[12] QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
[13] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[14] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[15] CHENG Tao. A method for vector geographic information acquisition based on synchronous correction with remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech