Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 194-202     DOI: 10.6046/zrzyyg.2021136
|
Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures
YIN Yaqiu1(), JIANG Cunhao1, JU Xing1, CHEN Keyang2, WANG Jie1, XING Yu1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Ningbo Natural Resources Management and Reservation Center, Ningbo 315042, China
Download: PDF(6837 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The exploitation of rich and unique mineral resources in Hainan Island has promoted economic growth but has also caused serious ecological environment problems. Analyzing the impacts of mining in Hainan Island and proposing suggestions on ecological restoration facilitate the protection and management of the ecological environment in Hainan Island. To this end, this study obtained the information on land destruction and ecological restoration of mines in Hainan Island using 2018 remote sensing images with high spatial resolution through image preprocessing, establishing interpretation indicators, and man-machine interactive interpretation. Specifically, with the information on land destruction and ecological restoration of mines as input, the assessment indicator system for mine geological environment was established based on 13 assessment factors of four categories, namely physical geography, basic geology, resource damage, and geological environment. Then, this study analyzed and assessed the effects of the geological environment of mines based on the analytic hierarchy process, obtaining the following results. The severely affected areas account for 0.22% of the total land area of Hainan Province and are mainly distributed in Wenchang City, Ledong Li Autonomous County, Xiuying District of Haikou City, Chengmai County, Lin’gao County, and Changjiang Li Autonomous County. The mine geological environment problems in these areas mainly include secondary geological disasters such as mining collapse of goaves and landslides caused by the mining of large-scale iron ore mines, as well as soil erosion and ecosystem degradation caused by the mining of coastal zirconium-titanium placers. The moderately severely affected areas account for 1.68% of the total land area of Hainan Province and are mainly distributed in Wenchang City, Danzhou City, Chengmai County, Qionghai City, Lin’gao County, Haikou City, and Dongfang City. The mine geological environment problems mainly include land damage caused by landslides induced by the mining of small- and medium-sized iron ore mines, as well as severe impacts on original terrain and landforms and the natural ecological environment caused by mining. The generally affected areas account for 4.93% of the total land area of Hainan Province and are mainly distributed in the coastal areas in the eastern part, the economically developed areas in the middle and northern parts, and the area with rich metallic minerals in the western part in Hainan Province. The mine geological environment problems in these areas mainly include the destruction of the surface landforms and natural vegetation caused by the mining of the scattered small nonmetal mines of building materials. This study proposed ecological restoration countermeasures targeting the different geological environment problems. For metal mines, it is suggested to primarily restore the ecosystem by natural restoration methods, supplemented by artificial restoration methods based on the elimination of geological hazards, soil improvement, and water environment management. For zirconium-titanium placers and nonmetal mines of building materials, it is recommended to restore vegetation to prevent water and soil erosion. For the coastal mine areas with severe desertification, it is recommended to gradually restore the ecosystem of the mining areas by growing crops such as watermelons and peanuts to improve soil and planting trees such as casuarina and Vatican hainanensis.

Keywords Hainan Island      remote sensing      geological environment of mines      ecological restoration     
ZTFLH:  TP79  
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yaqiu YIN
Cunhao JIANG
Xing JU
Keyang CHEN
Jie WANG
Yu XING
Cite this article:   
Yaqiu YIN,Cunhao JIANG,Xing JU, et al. Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures[J]. Remote Sensing for Natural Resources, 2022, 34(2): 194-202.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021136     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/194
Fig.1  Technique flowchart
Fig.2  Ture color remote sensing image of mine
一级分类 二级分类 解译标志
矿山占损土地 采场
矿山占损土地 中转场地
固体废弃物
矿山建筑
矿山恢复治理 林地
耕地
园地
草地
工业仓储用地
矿山恢复治理 住宅用地
交通运输用地
水域及水利设施用地
其他土地
Tab.1  Remote sensing interpretation marks of mine accupation
评价体系 评价指标 评价指标分级标准
1级 2级 3级
自然地理 地形地貌 地形复杂,地貌单元类型多,地形坡度>35° 地形较复杂,地貌单元类型少,地形坡度为20°~35° 地形简单,地貌单元类型单一,地形坡度<20°
降雨量 >800 mm湿润地区 200~800 mm半干旱半湿润地区 <200 mm干旱地区
植被覆盖度 <30% 30%~60% >60%
区域重要程度 重要区 较重要区 一般区
基础地质 构造 地质构造复杂,断裂构造发育强烈,节理发育,对矿坑、挖损土地充水及矿床开采影响大 地质构造较复杂,断裂构造较发育,节理较发育,对矿坑、挖损土地充水及矿床开采有一定影响 地质构造简单,断裂构造、节理不发育,对矿坑、挖损土地充水及矿床开采影响很小或无影响
岩性组合 松散堆积物 软岩为主 硬岩为主
资源损毁 开采矿山密度 开采点>5个/网格 开采点1~5个/网格 无开采
开采强度 >50万t/a 0~50万t/a 无开采
主要开采方式 露天 地下 无开采
主要矿种 能源 金属、非金属 无开采
占用土地比例 >10% 0~10% 无矿业占地
地质环境 地质灾害 有3个小型或1个大型地质灾害 有1~2个小型地质灾害 无地质灾害
生态环境恢复治理 开采面积>10%,有3个以上地质灾害 矿山占地面积为0~10%,且有1~2个地质灾害 无矿山占地和地质灾害
Tab.2  Index system of mine geological environment assessment
评价指标 权重
地形地貌 0.04
降雨量 0.02
植被覆盖度 0.05
区域重要程度 0.04
构造 0.04
岩性组合 0.04
开采矿山密度 0.16
开采强度 0.08
主要开采方式 0.06
主要矿种 0.06
占用土地比例 0.17
地质灾害 0.12
生态环境恢复治理 0.12
Tab.3  Weight of the mine geological environment assessment index
Fig.3  Assessment of mine geological environment impact of Hainan Island in 2018
[1] 温宁, 张志荣, 王修田, 等. 矿产勘查结硕果——海南省地质矿产勘查开发局"十五"期间重要地质找矿成果综述[C]// “十五”重要地质科技成果暨重大找矿成果交流会.中国地质学会, 2006:194-196.
[1] Wen N, Zhang Z R, Wang X T, et al. Achievement of mineral exploration:Summary of important geological prospecting achievement of Hainan bureau of geology and mineral exploration and development during the tenth five-year plan period[C]// “Tenth Five-year Plan” Important Geological Science and Technology Achievements and Important Prospecting Achievements Exchange Meeting.Geological Society of China, 2006:194-196.
[2] 李鹏伟. 海南省矿山开发状况及恢复治理遥感监测[D]. 北京: 中国地质大学(北京), 2020.
[2] Li P W. Remote sensing monitoring of mine development and restoration in Hainan Province[D]. Beijing: China University of Geosciences(Beijing), 2020.
[3] 仝长亮. 海南岛海砂资源的分类特征及成矿特点分析[J]. 中国地质调查, 2018, 5(3):74-80.
[3] Tong C L. Classification and metallogenic characteristics of sea sand resources in Hainan Island.[J]. Geological Survey of China, 2018, 5(3):74-80.
[4] 余海青. 海南省海洋经济现状及战略研究[D]. 天津: 天津大学, 2009.
[4] Yu H Q. Present situation and strategy of marine economy in Hainan Province[D]. Tianjin: Tianjin University, 2009.
[5] 王堂源. 海南省海岸带生态环境可持续发展实证研究[D]. 成都: 成都理工大学, 2011.
[5] Wang T Y. An empirical study on sustainable development of ecological environment in coastal zone of Hainan Province[D]. Chengdu: Chengdu Univerisity of Technology, 2011.
[6] 黄萍. 自然资源使用权制度研究[D]. 上海: 复旦大学, 2012.
[6] Huang P. Study on the system of use right of natural resources[D]. Shanghai: Fudan University, 2012.
[7] 王润生, 熊盛青, 聂洪峰, 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1699-1743.
[7] Wang R S, Xiong S Q, Nie H F, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699-1743.
[8] 关涛. 中国土地资源配置与可持续发展研究[D]. 黑龙江: 东北农业大学, 2002.
[8] Guan T. Research on the allocation and sustainable development of land resources in China[D]. Heilongjiang: Northeast Agricultural University, 2002.
[9] 邓辉. 高精度卫星遥感技术在地质灾害调查与评价中的应用[D]. 成都: 成都理工大学, 2007.
[9] Deng H. Application on investigation and evaluation of geohazard by high-precision satellite remote sensing technique[D]. Chengdu: Chengdu University of Technology, 2007.
[10] 汪洁, 刘小杨, 杨金中, 等. 基于国产高空间分辨率卫星数据的浙江省矿山环境恢复治理典型模式分析[J]. 国土资源遥感, 2020, 32(3): 216-221.doi: 10.6046/gtzyyg.2020.03.28.
doi: 10.6046/gtzyyg.2020.03.28
[10] Wang J, Liu X Y, Yang J Z, et al. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land and Resources, 2020, 32(3):216-221.doi: 10.6046/gtzyyg.2020.03.28.
doi: 10.6046/gtzyyg.2020.03.28
[11] 汪洁, 殷亚秋, 于航, 等. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1):232-236.doi: 10.6046/gtzyyg.2020.01.31.
doi: 10.6046/gtzyyg.2020.01.31
[11] Wang J, Yin Y Q, Yu H, et al. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land and Resources, 2020, 32(1):232-236.doi: 10.6046/gtzyyg.2020.01.31.
doi: 10.6046/gtzyyg.2020.01.31
[12] 高俊华, 刘莎莎, 杨金中, 等. 基于遥感的露天煤矿集中区地质环境灰关联评价——以准格尔煤田为例[J]. 国土资源遥感, 2021, 33(1): 183-190.doi: 10.6046/gtzyyg.2020006.
doi: 10.6046/gtzyyg.2020006
[12] Gao J H, Liu S S, Yang J Z, et al. Gray correlation evaluation of geo-logical environment in the open-pit coal mine concentration area based on remote sensing: A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land and Resources, 2021, 33(1):183-190.doi: 10.6046/gtzyyg.2020006.
doi: 10.6046/gtzyyg.2020006
[13] 赵玉灵. 基于层次分析法的矿山环境评价方法研究——以海南岛为例[J]. 国土资源遥感, 2020, 32(1):148-153.doi: 10.6046/gtzyyg.2020.01.20.
doi: 10.6046/gtzyyg.2020.01.20
[13] Zhao Y L. Study and application of analytic hierarchy process of mine geological environment: A case study in Hainan Island[J]. Remote Sensing for Land and Resources, 2020, 32(1):148-153.doi: 10.6046/gtzyyg.2020.01.20.
doi: 10.6046/gtzyyg.2020.01.20
[14] 殷亚秋, 杨金中, 汪洁, 等. 长江经济带废弃矿山占损土地遥感调查与生态修复对策[J]. 国土资源遥感, 2020, 32(2):170-176.doi: 10.6046/gtzyyg.2020.02.22.
doi: 10.6046/gtzyyg.2020.02.22
[14] Yin Y Q, Yang J Z, Wang J, et al. Remote sensing survey of land occupied and damaged by abandoned mines along the Yangtze River Economic Belt and research on ecological remediation countermeasures[J]. Remote Sensing for Land and Resources, 2020, 32(2):170-176.doi: 10.6046/gtzyyg.2020.02.22.
doi: 10.6046/gtzyyg.2020.02.22
[15] 王博. 基于Aster G-Dem的海南岛地形地貌信息提取与土地利用景观格局分析[D]. 海口: 海南大学, 2010.
[15] Wang B. Topographic and geomorphic information extraction and landscape pattern analysis of land use in Hainan Island based on Aster G-Dem[D]. Haikou: University of Hainan, 2010.
[16] 卢俊培. 海南大农业的命脉——森林[J]. 热带林业科技, 1981(4):1-6.
[16] Lu J P. The lifeblood of great agriculture in Hainan:Forest[J]. Tropical Forestry Science and Technology, 1981(4):1-6.
[17] 郭金玉, 张忠彬, 孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报, 2008(5):148-153.
[17] Guo J Y, Zhang Z B, Sun Q Y. Study and application of analytic hierarchy process[J]. China Safety Science Journal, 2008(5):148-153.
[18] 倪绍祥. 近10年来中国土地评价研究的进展[J]. 自然资源学报, 2003(6):672-683.
[18] Ni S X. Progress in the research on land evaluation in China during the last 10 years[J]. Journal of Natural Resources, 2003(6):672-683.
[19] 赵玉灵, 杨金中, 殷亚秋, 等. 海南岛东部滨海锆钛砂矿开发状况遥感监测与生态恢复治理对策研究[J]. 国土资源遥感, 2019, 31(4):143-150.doi: 10.6046/gtzyyg.2019.04.19.
doi: 10.6046/gtzyyg.2019.04.19
[19] Zhao Y L, Yang J Z, Yin Y Q, et al. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land and Resources, 2019, 31(4):143-150.doi: 10.6046/gtzyyg.2019.04.19.
doi: 10.6046/gtzyyg.2019.04.19
[20] 高静. 海南岛东部滨海砂矿废弃地植被恢复效应的比较研究[D]. 海口: 海南师范大学, 2007.
[20] Gao J. Comparative study on vegetation restoration effect of coastal placer abandoned land in eastern Hainan Island[D]. Haikou: Hainan Normal University, 2007.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[6] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[7] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[10] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[11] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[12] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[13] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
[14] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[15] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech