Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 162-168     DOI: 10.6046/zrzyyg.2022490
|
Urban expansion in the Changsha-Zhuzhou-Xiangtan urban agglomeration and its urban heat island effect from 2000 to 2018
YAO Lingyun1,2(), WANG Li1, NIU Zheng1,2, YIN Ziqi1,2, FU Yuwen1,2
1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Science, Beijing 100049, China
Download: PDF(4296 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The urban heat island effect is closely linked with the well-being of urban residents. Rapid urbanization has further accelerated urban expansion. This is accompanied by an increasingly significant urban heat island effect, especially in cities of central and western China in the past 20 years. To explore the relationship between the expansion of cities and urban agglomerations and the changes in the urban heat island effect, this study analyzed the expansion and spatial form variation of cities in the Changsha-Zhuzhou-Xiangtan urban agglomeration using the Boyce-Clark shape index. The land surface temperatures were derived through inversion using the practical single-channel algorithm based on the Google Earth Engine (GEE) platform. The temperature zones with different grades were determined using the mean-standard deviation method, followed by the definition and extraction of the range of the urban heat island effect. The urban center and heat island center were extracted, and the variation trends of the relationship between urban expansion and urban heat island effect were analyzed using the center shift method. The results show that the changes in the urban heat island effect were consistent with the expansion of the urban agglomeration and its cities. The results lead to the following conclusions: ① After 2015, the Changsha-Zhuzhou-Xiangtan urban agglomeration entered a critical period of rapid development; ② Urban expansion is the primary cause of the increase in the area of urban heat island effect; ③ The urban heat island center roughly shares the same variation trend with the urban center, and the urban heat island range increases in the direction roughly consistent with the urban expansion direction.

Keywords urban heat island effect      urban spatial form      land surface temperature      Boyce-Clark shape index      center of gravity shift     
ZTFLH:  TP79  
  X87  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lingyun YAO
Li WANG
Zheng NIU
Ziqi YIN
Yuwen FU
Cite this article:   
Lingyun YAO,Li WANG,Zheng NIU, et al. Urban expansion in the Changsha-Zhuzhou-Xiangtan urban agglomeration and its urban heat island effect from 2000 to 2018[J]. Remote Sensing for Natural Resources, 2024, 36(1): 162-168.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022490     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/162
Fig.1  Location of the study area
形状类型 参考指数 形状类型 参考指数
圆形 0.00 H形 49.71
正八边形 2.06 长条矩形 59.89
菱形 9.66 X形 66.37
正四边形 9.66 带状矩形 90.85
竖矩形 25.29 线矩形 94.01
横矩形 33.04 直线形 187.50
星形 34.85
Tab.1  Type of shape and its reference value in Boyce-Clark shape index
LST等级 分级标准
低温区 Ti<Tmean-std
次低温区 Tmean-stdTi<Tmean-0.5std
中温区 Tmean-0.5stdTi<Tmean+0.5std
次高温区 Tmean+0.5stdTi<Tmean+std
高温区 Tmean+1stdTi
Tab.2  Standard for dividing temperature levels using mean-standard deviation
Fig.2  Urban center of gravity and radiation radius of Changsha-Zhuzhou-Xiangtan urban agglomeration from 2000 to 2018

城市
2000年 2005年 2010年 2015年 2018年
指数 面积/km2 指数 面积/km2 指数 面积/km2 指数 面积/km2 指数 面积/km2
长沙市 27.52 117.44 21.84 235.21 27.31 390.76 24.78 486.94 21.78 755.99
株洲市 36.44 56.72 30.56 67.85 22.49 90.39 27.78 115.91 22.74 197.36
湘潭市 45.22 42.98 27.15 62.42 29.40 96.35 31.45 123.26 23.14 247.71
Tab.3  Variation of Boyce-Clark shape index and urban area of Changsha-Zhuzhou-Xiangtan urban agglomeration from 2000 to 2018
Fig.3  Grade distribution characteristics of temperature region in Changsha-Zhuzhou-Xiangtan urban agglomeration from 2000 to 2018
城市 热岛转化类型 2000—
2005年
2005—
2010年
2010—
2015年
2015—
2018年
长沙市 非热岛转为热岛面积 2.08 10.49 8.42 9.17
热岛转为非热岛面积 1.02 2.07 7.57 49.18
新增热岛面积 103.34 142.68 77.11 154.98
株洲市 非热岛转为热岛面积 5.30 0.30 3.74 3.13
热岛转为非热岛面积 0.11 2.32 1.73 2.23
新增热岛面积 9.95 18.38 21.87 61.25
湘潭市 非热岛转为热岛面积 0.64 0.91 3.75 3.59
热岛转为非热岛面积 0.42 1.75 1.62 5.37
新增热岛面积 17.39 29.64 20.05 71.68
Tab.4  Type and area of urban heat island transformation of Changsha-Zhuzhou-Xiangtan urban agglomeration from 2000 to 2018 (km2)
Fig.4  Trends of urban center of gravity and urban heat island center of gravity migration of Changsha-Zhuzhou-Xiangtan urban agglomeration from 2000 to 2018
城市 2000年 2005年 2010年 2015年 2018年
S/m C S/m C S/m C S/m C S/m C
长沙市 74.07 170.39 0.98 24.84 0.96 114.13 0.95 566.37 0.96
株洲市 143.76 12.56 0.93 91.86 1.00 27.76 1.00 172.61 0.96
湘潭市 38.26 39.35 0.99 93.33 1.00 153.70 1.00 775.55 1.00
Tab.5  Spatial distance and consistency index of center of gravity migration of Changsha-Zhuzhou-Xiangtan urban agglomeration from 2000 to 2018
[1] 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应[J]. 生态学报, 2005, 25(8):2055-2060.
[1] Xiao R B, Ouyang Z Y, Li W F, et al. A review of the eco-environmental consequences of urban heat islands[J]. Acta Ecologica Sinica, 2005, 25(8):2055-2060.
[2] Li D, Bou-Zeid E. Synergistic Interactions between urban heat islands and heat waves:The impact in cities is larger than the sum of its parts[J]. Journal of Applied Meteorology and Climatology, 2013, 52(9):2051-2064.
doi: 10.1175/JAMC-D-13-02.1 url: https://journals.ametsoc.org/view/journals/apme/52/9/jamc-d-13-02.1.xml
[3] 谢苗苗, 王仰麟, 付梅臣. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 2011, 30(1):35-41.
[3] Xie M M, Wang Y L, Fu M C. An overview and perspective about causative factors of surface urban heat island effects[J]. Progress in Geography, 2011, 30(1):35-41.
doi: 10.11820/dlkxjz.2011.01.004
[4] 江颂, 彭建, 董建权, 等. 地表城市热岛效应的概念内涵与定量刻画[J]. 地理学报, 2022, 77(9):2249-2265.
doi: 10.11821/dlxb202209008
[4] Jiang S, Peng J, Dong J Q, et al. Conceptual connotation and quantitative characterization of surface urban heat island effect[J]. Acta Geographica Sinica, 2022, 77(9):2249-2265.
doi: 10.11821/dlxb202209008
[5] 陈爱莲, 孙然好, 陈利顶. 基于景观格局的城市热岛研究进展[J]. 生态学报, 2012, 32(14):4553-4565.
[5] Chen A L, Sun R H, Chen L D. Studies on urban heat island from a landscape pattern view:A review[J]. Acta Ecologica Sinica, 2012, 32(14):4553-4565.
doi: 10.5846/stxb url: http://www.ecologica.cn/
[6] 胡楠林, 任志彬, 董禹麟, 等. 中国城市群热岛效应时空演变及其影响因素分析[J]. 地理科学, 2022, 42(9):1534-1545.
doi: 10.13249/j.cnki.sgs.2022.09.003
[6] Hu N L, Ren Z B, Dong Y L, et al. Spatio-temporal evolution of heat island effect and its driving factors in urban agglomerations of China[J]. Scientia Geographica Sinica, 2022, 42(9):1534-1545.
doi: 10.13249/j.cnki.sgs.2022.09.003
[7] Tian P, Li J L, Cao L D, et al. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure[J]. Sustainable Cities and Society, 2021, 74: 103208.
doi: 10.1016/j.scs.2021.103208 url: https://linkinghub.elsevier.com/retrieve/pii/S2210670721004868
[8] Nurwanda A, Honjo T. Analysis of land use change and expansion of surface urban heat island in Bogor city by remote sensing[J]. ISPRS International Journal of Geo-Information, 2018, 7(5):165.
doi: 10.3390/ijgi7050165 url: http://www.mdpi.com/2220-9964/7/5/165
[9] Gao Z, Hou Y, Chen W P. Enhanced sensitivity of the urban heat island effect to summer temperatures induced by urban expansion[J]. Environmental Research Letters, 2019, 14(9):094005.
doi: 10.1088/1748-9326/ab2740
[10] Zhou D C, Xiao J F, Bonafoni S, et al. Satellite remote sensing of surface urban heat islands:Progress,challenges,and perspectives[J]. Remote Sensing, 2018, 11(1):48.
doi: 10.3390/rs11010048 url: http://www.mdpi.com/2072-4292/11/1/48
[11] 黄群芳. 城市空间形态对城市热岛效应的多尺度影响研究进展[J]. 地理科学, 2021, 41(10):1832-1842.
doi: 10.13249/j.cnki.sgs.2021.10.015
[11] Huang Q F. Effects of urban spatial morphology on urban heat island effect from multi-spatial scales perspectives[J]. Scientia Geographica Sinica, 2021, 41(10):1832-1842.
doi: 10.13249/j.cnki.sgs.2021.10.015
[12] Zhao M Y, Cai H Y, Qiao Z, et al. Influence of urban expansion on the urban heat island effect in Shanghai[J]. International Journal of Geographical Information Science, 2016, 30(12):2421-2441.
doi: 10.1080/13658816.2016.1178389 url: https://www.tandfonline.com/doi/full/10.1080/13658816.2016.1178389
[13] Tu L L, Qin Z H, Li W J, et al. Surface urban heat island effect and its relationship with urban expansion in Nanjing,China[J]. Journal of Applied Remote Sensing, 2016, 10(2):026037.
doi: 10.1117/1.JRS.10.026037 url: http://remotesensing.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JRS.10.026037
[14] 湖南省统计局. 湖南统计年鉴[M]. 北京: 中国统计出版社, 2021.
[14] Hunan Provincial Bureau of Statistics. Hunan Statistical Yearbook[M]. Beijing: China Statistics Press, 2021.
[15] Li X C, Gong P, Zhou Y Y, et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data[J]. Environmental Research Letters, 2020, 15(9):094044.
doi: 10.1088/1748-9326/ab9be3
[16] Boyce R R, Clark W A V. The concept of shape in geography[J]. Geographical Review, 1964, 54(4):561-572.
doi: 10.2307/212982 url: https://www.jstor.org/stable/212982?origin=crossref
[17] 熊皓, 郑伯红, 贾磊. 驱动力与制约力相互作用下我国城市空间扩张[J]. 经济地理, 2016, 36(1):82-88.
[17] Xiong H, Zheng B H, Jia L. Urban space expansion in China under the interaction between the driving force and the restriction[J]. Economic Geography, 2016, 36(1):82-88.
[18] 王新生, 刘纪远, 庄大方, 等. 中国城市形状的时空变化[J]. 资源科学, 2005, 27(3):20-25.
[18] Wang X S, Liu J Y, Zhuang D F, et al. Spatial-temporal changes of the shapes of Chinese cities[J]. Resources Science, 2005, 27(3):20-25.
[19] Wang M M, Zhang Z J, Hu T, et al. A practical single-channel algorithm for land surface temperature retrieval:Application to landsat series data[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(1):299-316.
doi: 10.1029/2018JD029330 url: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JD029330
[20] 陈松林, 王天星. 等间距法和均值标准差法界定城市热岛的对比研究[J]. 地球信息科学学报, 2009, 11(2):145-150.
[20] Chen S L, Wang T X. Comparison analyses of equal interval method and mean-standard deviation method used to delimitate urban heat island[J]. Journal of Geo-Information Science, 2009, 11(2):145-150.
doi: 10.3724/SP.J.1047.2009.00145 url: http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1047.2009.00145
[21] 任钟冬, 黄玥, 谭惠芝, 等. 基于均值-标准差改进的滨州市多时相热岛强度变化分析[J]. 沙漠与绿洲气象, 2022, 16(2):40-47.
[21] Ren Z D, Huang Y, Tan H Z, et al. Multi-temporal analysis of urban heat island intensity variation in Binzhou City based on improved mean-standard deviation[J]. Desert and Oasis Meteorology, 2022, 16(2):40-47.
[22] 杨智威, 陈颖彪, 吴志峰, 等. 粤港澳大湾区建设用地扩张与城市热岛扩张耦合态势研究[J]. 地球信息科学学报, 2018, 20(11):1592-1603.
doi: 10.12082/dqxxkx.2018.180242
[22] Yang Z W, Chen Y B, Wu Z F, et al. The coupling between construction land expansion and urban heat island expansion in Guangdong-Hong Kong-Macao Greater Bay[J]. Journal of Geo-Information Science, 2018, 20(11):1592-1603.
[23] 樊杰, 陶岸君, 吕晨. 中国经济与人口重心的耦合态势及其对区域发展的影响[J]. 地理科学进展, 2010, 29(1):87-95.
[23] Fan J, Tao A J, Lyu C. The coupling mechanism of the centroids of economic gravity and population gravity and its effect on the regional gap in China[J]. Progress in Geography, 2010, 29(1):87-95.
doi: 10.11820/dlkxjz.2010.01.012
[1] WANG Yuexiang, CHEN Wanting, ZHU Yuxin, CAI Anning. Urban heat island effects of Nanjing based on urban expansion directions and types derived from remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 130-138.
[2] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[3] MA Junjun, WANG Chunlei, HUANG Xiaohong. The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin[J]. Remote Sensing for Natural Resources, 2023, 35(1): 198-204.
[4] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[5] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[6] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[7] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[8] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[9] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[10] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[11] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[12] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[13] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[14] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[15] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech