Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 131-141     DOI: 10.6046/zrzyyg.2023216
|
Analysis of changing trends in NDVI and their driving forces in the Tuojiang River basin based on an improved BFAST model
ZHONG Xuzhen1,2,3(), WU Ruijuan1,4()
1. School of Geography and Resource Science, Neijiang Normal University, Neijiang 641100, China
2. Faculty of Geography, Yunnan Normal University, Kunming 650500, China
3. Southwest United Graduate School, Yunnan Normal University, Kunming 650500, China
4. State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China
Download: PDF(4657 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vegetation, the main body of a terrestrial ecosystem, serves as an important indicator of environmental changes in a regional ecosystem. The Tuojiang River basin is an economically and industrially developed area in Sichuan. Dynamic vegetation monitoring and the analysis of factors driving its changes hold great significance for ecological change assessment and ecological protection. This study investigated the Tuojiang River basin. Based on MODIS data of normalized difference vegetation index (NDVI) from 2000 to 2021, this study detected, analyzed, and compared linear and nonlinear characteristics of the data, including mutation types and years, using linear regression Slope and an improved BFAST01 model. Additionally, this study explored the factors influencing the NDVI using the Optimal Parameters-based Geographic Detector (OPGD) model. The results indicate that more than 95% of the Tuojiang River basin exhibited NDVI values exceeding 0.6. The linear regression analysis for NDVI trends revealed that regions with significantly improved and significantly degraded vegetation coverage accounted for 18.07% and 10.60%, respectively, of the total area of the river basin, as indicated by image pixels. The BFAST01 nonlinear mutation analysis showed that the NDVI trends in the Tuojiang River basin over the 22 years can be categorized into eight mutation types, with the proportion of regions exhibiting improved vegetation coverage (58.62%) exceeding that of regions with degraded vegetation coverage (41.38%). These findings were consistent with the linear regression analysis, suggesting that the vegetation in the river basin was well protected in the 22 years. Mutations were concentrated between 2002 and 2018, with “interruption-+” and “reversal+-” representing the most common mutation types, accounting for 14.83% and 13.19%, respectively. In contrast, other mutation types exhibited a relatively even distribution across different stages. The results of the OPGD model revealed slight variations in the factors influencing NDVI across different years. Generally, the most influential factors included land use/land cover (LULC), elevation, and terrain and landforms, followed by meteorological factors such as temperature and precipitation. In contrast, other factors produced relatively minor impacts. Overall, despite some impacts, human factors like population and GDP exerted less influence on vegetation than natural factors in the Tuojiang River basin. Therefore, vegetation protection and restoration should consider the combined effects of both natural factors and anthropogenic activities.

Keywords NDVI      nonlinear trend      BFAST improved model      OPGD      Tuojiang River basin     
ZTFLH:  TP79  
  X87  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuzhen ZHONG
Ruijuan WU
Cite this article:   
Xuzhen ZHONG,Ruijuan WU. Analysis of changing trends in NDVI and their driving forces in the Tuojiang River basin based on an improved BFAST model[J]. Remote Sensing for Natural Resources, 2025, 37(1): 131-141.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023216     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/131
Fig.1  Geographical location of the Tuojiang River basin
序号 趋势类型名称 第一段 第二段 趋势类型含义
1 单调递增 + + 未检测出明显突变,趋势整体表现为单调性增加
2 单调递减 - - 未检测出明显突变,趋势整体表现为单调性减小
3 单调递增(带正中断) + + 检测出1个明显突变,且断点处值突然增大,趋势整体表现为单调性增加,用符号“单调递增+”表示
4 单调递减(带负中断) - - 检测出1个明显突变,且断点处值突然减小,趋势整体表现为单调性减小,用符号“单调递减-”表示
5 中断(随着负中断增加) + + 检测出1个明显突变,且断点处值突然减小,趋势表现为显著增加,显著负中断,然后显著增加,用符号“中断-+”表示
6 中断(随着正中断减少) - - 检测出1个明显突变,且断点处值突然增大,趋势表现为显著减小,显著正中断,然后显著减小,用符号“中断+-”表示
7 反转(由增到减) + - 检测出1个明显突变,趋势表现为从显著增加转换为显著减小,用符号“反转+-”表示
8 反转(由减到增) - + 检测出1个明显突变,趋势表现为从显著减小转换为显著增加,用符号“反转-+”表示
Tab.1  Types of NDVI change trends detected by BFAST01
Fig.2  Schematic diagram of BFAST01 trend mutation types
变量名称 变量 2000年 2005年 2010年 2015年 2020年
离散方法 类别数 离散方法 类别数 离散方法 类别数 离散方法 类别数 离散方法 类别数
海拔 X1 自然间断点 12 自然间断点 12 自然间断点 12 自然间断点 12 自然间断点 10
坡度 X2 几何间隔 12 自然间断点 12 自然间断点 12 自然间断点 12 自然间断点 11
坡向 X3 手动 10 手动 10 手动 10 手动 10 手动 10
气温 X4 自然间断点 10 相等间隔 12 相等间隔 11 相等间隔 12 自然间断点 11
降水 X5 自然间断点 12 分位数 10 自然间断点 8 自然间断点 12 自然间断点 12
土壤类型 X6 手动 16 手动 16 手动 16 手动 16 手动 16
地形地貌 X7 手动 24 手动 24 手动 24 手动 24 手动 24
LULC X8 手动 6 手动 6 手动 6 手动 6 手动 6
人口 X9 自然间断点 11 自然间断点 12 自然间断点 10 自然间断点 11 自然间断点 12
GDP X10 分位数 12 自然间断点 11 自然间断点 12 自然间断点 12 自然间断点 12
Tab.2  Discretization methods and categories of geographical detector factors
Fig.3  Spatial distribution and linear change trend of NDVI in the Tuojiang River basin from 2000 to 2021
Fig.4-1  BFAST01 mutation types and significance
Fig.4-2  BFAST01 mutation types and significance
Fig.5  BFAST01 mutation time
突变时间 单调递增 单调递减 单调增加+ 单调递减- 中断-+ 中断+- 反转+- 反转-+ 合计
2002—2007年 0.31 0.10 14.08 4.45 12.59 3.58 35.11
2008—2013年 0.06 0.53 14.83 4.50 13.19 3.90 37.02
2014—2018年 0.11 0.62 10.73 4.66 6.68 5.07 27.88
合计 0.48 1.26 39.64 13.61 32.46 12.56 100
Tab.3  Distribution of years of changes in different mutation types (%)
线性
回归
BFAST01
单调递增 单调递减 单调增加+ 单调递减- 中断-+ 中断+- 反转+- 反转-+
退化 0 54.33 0 1.18 12.82 7.98 15.88 7.81
改善 64.99 0 0.32 0 17.69 3.49 10.61 2.91
Tab.4  Linear and nonlinear trend statistics (%)
Fig.6  Histogram of impact factor q values for various years in the Tuojiang River basin
[1] 李雪银, 张志强, 孙爱芝. 1982—2021年黄河流域植被覆盖时空演变及影响因素研究[J]. 地球环境学报, 2022, 13(4):428-436.
[1] Li X Y, Zhang Z Q, Sun A Z. Study on the spatial-temporal evolution and influence factors of vegetation coverage in the Yellow River basin during 1982—2021[J]. Journal of Earth Environment, 2022, 13(4):428-436.
[2] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4):258-264.doi:10.6046 /zrzyyg.2021019.
[2] Jin C M, Yang X W, Jing H T. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4):258-264.doi:10.6046 /zrzyyg.2021019.
[3] 王力, 赵思妍, 陈元鹏, 等. 基于GEE云平台的黄土高原生态修复区植被变化与归因[J]. 农业机械学报, 2023, 54(3):210-223.
[3] Wang L, Zhao S Y, Chen Y P, et al. Vegetation change and attribution in ecological restoration area of Loess Plateau based on GEE cloud platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3):210-223.
[4] Han Z, Song W. Interannual trends of vegetation and responses to climate change and human activities in the Great Mekong Subregion[J]. Global Ecology and Conservation, 2022,38:e02215.
[5] 陈文裕, 夏丽华, 徐国良, 等. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7):1306-1316.
doi: 10.16258/j.cnki.1674-5906.2022.07.003
[5] Chen W Y, Xia L H, Xu G L, et al. Dynamic variation of NDVI and its influencing factors in the Pearl River basin from 2000 to 2020[J]. Ecology and Environmental Sciences, 2022, 31(7):1306-1316.
[6] Zhang X, Cao Q, Chen H, et al. Effect of vegetation carryover and climate variability on the seasonal growth of vegetation in the upper and middle reaches of the Yellow River basin[J]. Remote Sensing, 2022, 14(19):5011.
[7] 冯李. 金沙江流域植被覆盖度的遥感动态监测及其驱动机制研究[D]. 昆明: 云南师范大学, 2021.
[7] Feng L. The study of remote sensing dynamic monitoring and its driving mechanism of vegetation cover in the Jinsha River basin[D]. Kunming: Yunnan Normal University, 2021.
[8] 孙金龙, 黄润秋. 切实履行生态环境保护职责不断开创新时代美丽中国建设新局面[N]. 人民日报,2022-11-21(11).
[8] Sun J L, Huang R Q. Effectively perform the responsibility of ecological environment protection and constantly create a new situation of building a beautiful China in a new era[N]. People’s Daily,2022-11-21(11).
[9] 林妍敏, 李文慧, 南雄雄, 等. 基于地理探测器的宁夏贺兰山植被覆盖度时空分异及驱动因子[J]. 应用生态学报, 2022, 33(12):3321-3327.
doi: 10.13287/j.1001-9332.202212.025
[9] Lin Y M, Li W H, Nan X X, et al. Spatial-temporal differentiation and driving factors of vegetation coverage in Ningxia Helan Mountain based on geodetector[J]. Chinese Journal of Applied Ecology, 2022, 33(12):3321-3327.
[10] 孙美荣, 孙鹏森. 西南高山亚高山区植被活动变化的气候驱动效应与可持续性[J]. 水土保持研究, 2023, 30(3):240-250.
[10] Sun M R, Sun P S. Climate-driving effects and sustainability of vegetation activity change in alpine and subalpine areas of southwest China[J]. Research of Soil and Water Conservation, 2023, 30(3):240-250.
[11] Gao X, Zhao D. Impacts of climate change on vegetation phenology over the Great Lakes region of Central Asia from 1982 to 2014[J]. Science of the Total Environment, 2022,845:157227.
[12] 张兴航, 张百平, 王晶, 等. 神农架林区植被分布与地形的关系研究[J]. 地球信息科学学报, 2020, 22(3):482-493.
doi: 10.12082/dqxxkx.2020.190553
[12] Zhang X H, Zhang B P, Wang J, et al. Study on the relationship between terrain and distribution of the vegetation in Shennongjia forestry district[J]. Journal of Geo-Information Science, 2020, 22(3):482-493.
[13] Mendes M P, Rodriguez-Galiano V, Aragones D. Evaluating the BFAST method to detect and characterise changing trends in water time series:A case study on the impact of droughts on the Mediterranean climate[J]. The Science of the Total Environment, 2022,846:157428.
[14] 辛宇, 孙梦鑫, 张岳, 等. 2000—2020年四川省植被覆盖时空变化特征及其气候驱动因子[J]. 水土保持通报, 2022, 42(4):312-319.
[14] Xin Y, Sun M X, Zhang Y, et al. Spatiotemporal characteristics of vegetation cover and climate driving factors in Sichuan Province from 2000 to 2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(4):312-319.
[15] He C, Yan F, Wang Y, et al. Spatiotemporal variation in vegetation growth status and its response to climate in the Three-River Headwaters region,China[J]. Remote Sensing, 2022, 14(19):5041.
[16] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2):295-305.doi:10.6064/zrzyyg.2022151.
[16] Pang X, Liu J. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2):295-305.doi:10.6064/zrzyyg.2022151.
[17] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3):212-220.doi:10.6064/zrzyyg.2022240.
[17] Wang Y L, Yang X, Hao L N. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3):212-220.doi:10.6064/zrzyyg.2022240.
[18] Geng S, Zhang H, Xie F, et al. Vegetation dynamics under rapid urbanization in the Guangdong-Hong Kong-Macao Greater Bay area urban agglomeration during the past two decades[J]. Remote Sensing, 2022, 14(16):3993.
[19] Zhong X, Li J, Wang J, et al. Linear and nonlinear characteristics of long-term NDVI using trend analysis:A case study of lancang-mekong river basin[J]. Remote Sensing, 2022, 14(24):6271.
[20] 罗爽, 刘会玉, 龚海波. 1982—2018年中国植被覆盖变化非线性趋势及其格局分析[J]. 生态学报, 2022, 42(20):8331-8342.
[20] Luo S, Liu H Y, Gong H B. Nonlinear trends and spatial pattern analysis of vegetation cover change in China from 1982 to 2018[J]. Acta Ecologica Sinica, 2022, 42(20):8331-8342.
[21] Schultz M, Clevers J G P W, Carter S, et al. Performance of vegetation indices from Landsat time series in deforestation monitoring[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,52:318-327.
[22] Li L, Zhang Y, Liu Q, et al. Regional differences in shifts of temperature trends across China between 1980 and 2017[J]. International Journal of Climatology, 2019, 39(3):1157-1165.
[23] Brakhasi F, Hajeb M, Mielonen T, et al. Investigating aerosol vertical distribution using CALIPSO time series over the Middle East and North Africa (MENA),Europe,and India:A BFAST-based gradual and abrupt change detection[J]. Remote Sensing of Environment, 2021,264:112619.
[24] Dupas R, Minaudo C, Gruau G, et al. Multidecadal trajectory of riverine nitrogen and phosphorus dynamics in rural catchments[J]. Water Resources Research, 2018, 54(8):5327-5340.
[25] Horion S, Ivits E, De Keersmaecker W, et al. Mapping European ecosystem change types in response to land-use change,extreme climate events,and land degradation[J]. Land Degradation & Development, 2019, 30(8):951-963.
[26] 秦格霞, 吴静, 李纯斌, 等. 中国北方草地植被物候变化及其对气候变化的响应[J]. 应用生态学报, 2019, 30(12):4099-4107.
doi: 10.13287/j.1001-9332.201912.015
[26] Qin G X, Wu J, Li C B, et al. Grassland vegetation phenology change and its response to climate changes in North China[J]. Chinese Journal of Applied Ecology, 2019, 30(12):4099-4107.
[27] 方贺, 张育慧, 何月, 等. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2):245-254.doi:10.6064/zrzyyg.2022070.
[27] Fang H, Zhang Y H, He Y, et al. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2):245-254.doi:10.6064/zrzyyg.2022070.
[28] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
[28] Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
[29] Song Y, Wang J, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis:Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5):593-610.
[30] 王巨. 基于时序NDVI植被变化检测与驱动因素量化方法研究——以河西地区为例[D]. 兰州: 兰州大学, 2020.
[30] Wang J. Methods for detecting vegetation changes and quantifying the driving factors using NDVI timeseries by taking Hexi as a case area[D]. Lanzhou: Lanzhou University, 2020.
[31] Fang X, Zhu Q, Ren L, et al. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST:A case study in Quebec,Canada[J]. Remote Sensing of Environment, 2018,206:391-402.
[32] Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(1):106-115.
[33] Berveglieri A, Imai N N, Christovam L E, et al. Analysis of trends and changes in the successional trajectories of tropical forest using the Landsat NDVI time series[J]. Remote Sensing Applications:Society and Environment, 2021,24:100622.
[34] Kovács G M, Horion S, Fensholt R. Characterizing ecosystem change in wetlands using dense earth observation time series[J]. Remote Sensing of Environment, 2022,281:113267.
[35] R Core Team. 2018. R:A Language and Environment for Statistical Computing,Vienna[EB/OL].https://www.R-project.org.
url: https://www.R-project.org
[36] Higginbottom T P, Symeonakis E. Identifying ecosystem function shifts in Africa using breakpoint analysis of long-term NDVI and RUE data[J]. Remote Sensing, 2020, 12(11):1894.
[37] Smith V, Portillo-Quintero C, Sanchez-Azofeifa A, et al. Assessing the accuracy of detected breaks in Landsat time series as predictors of small scale deforestation in tropical dry forests of Mexico and Costa Rica[J]. Remote Sensing of Environment, 2019,221:707-721.
[38] 钟旭珍, 张素, 吴瑞娟, 等. 沱江流域土壤侵蚀动态变化及驱动力分析[J]. 水土保持研究, 2022, 29(2):43-49,56.
[38] Zhong X Z, Zhang S, Wu R J, et al. Analysis of dynamic changes and driving forces of soil erosion in Tuojiang River basin[J]. Research of Soil and Water Conservation, 2022, 29(2):43-49,56.
[39] 朱思佳, 冯徽徽, 邹滨, 等. 2000—2019年洞庭湖流域植被 NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34(3):196-206.doi:10.6064/zrzyyg.2021283.
[39] Zhu S J, Feng H H, Zou B, et al. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors[J]. Remote Sensing for Natural Resources, 2022, 34(3):196-206.doi:10.6064/zrzyyg.2021283.
[40] 马炳鑫, 和彩霞, 靖娟利, 等. 1982—2019年中国西南地区植被变化归因研究[J]. 地理学报, 2023, 78(3):714-728.
doi: 10.11821/dlxb202303013
[40] Ma B X, He C X, Jing J L, et al. Attribution of vegetation dynamics in Southwest China from 1982 to 2019[J]. Acta Geographica Sinica, 2023, 78(3):714-728.
doi: 10.11821/dlxb202303013
[1] YANG Tao, WANG Lishe, ZHENG Pengpeng, WANG Peng, ZHAO Hansen, YANG Shengfei, ZHAO Jun, XI Rengang, REN Huaning, CAI Haojie. Spatiotemporal differentiation and responses to climate and mining activities of NDVI in Shaanxi Province from 2001 to 2022[J]. Remote Sensing for Natural Resources, 2025, 37(1): 82-93.
[2] LI Yimin, FENG Xianjie, LI Yuanting, YANG Xue, XIANG Qianying, JI Peikun. Exploring the spatio-temporal variations and influencing factors of vegetation cover in Yunnan Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 116-125.
[3] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[4] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[5] ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment[J]. Remote Sensing for Natural Resources, 2022, 34(4): 136-143.
[6] CHEN Yanying, MA Xincheng, XU Yanping, WANG Ying, WANG Yanbo. Methods for the application of topography and NDVI in re-identification of remote sensing-based monitoring of forest fires[J]. Remote Sensing for Natural Resources, 2022, 34(3): 88-96.
[7] ZENG Hui, REN Huazhong, ZHU Jinshun, GUO Jinxin, YE Xin, TENG Yuanjian, NIE Jing, QIN Qiming. Impacts of the Syrian Civil War on vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(3): 121-128.
[8] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[9] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[10] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[11] DU Fangzhou, SHI Yuli, SHENG Xia. Research on downscaling of TRMM precipitation products based on deep learning: Exemplified by northeast China[J]. Remote Sensing for Land & Resources, 2020, 32(4): 145-153.
[12] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[13] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[14] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[15] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech