Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 116-125     DOI: 10.6046/zrzyyg.2023037
|
Exploring the spatio-temporal variations and influencing factors of vegetation cover in Yunnan Province
LI Yimin1,2(), FENG Xianjie3, LI Yuanting3, YANG Xue1, XIANG Qianying3, JI Peikun1
1. School of Earth Sciences, Yunnan University, Kunming 650500, China
2. Research Center of Domestic High-resolutellite Remote Sensing Geological Engineering, Kunming 650500, China
3. Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
Download: PDF(15550 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Yunnan Province has abundant species resources but fragile ecosystems, and the ecological vulnerability is closely related to vegetation cover. Hence, based on the normalized difference vegetation index (NDVI) from the MOD13Q1 dataset for 2000—2022, this study dynamically monitored the spatio-temporal variations of vegetation using the maximum value composite (MVC), Theil-Sen median trend analysis, and Mann-Kendall significance test. Moreover, this study delved into the response of vegetation to factors like topography, climate change, and land cover through correlation analysis. The results show that: ① From 2000 to 2022, the overall vegetation coverage of Yunnan Province was relatively high, with average annual NDVI values ranging from 0.74 to 0.90, showing a fluctuating upward trend. Of the whole area, 91.17% exhibited an increasing vegetation coverage trend, with the fastest growth rate seen in northeastern Yunnan; ② Regional differences were observed in vegetation cover, which was higher in southeastern and southwestern Yunnan compared to northwestern, central, and northeastern Yunnan; ③ The NDVI values of Yunnan Province were relatively stable below the altitude of 3 900 m, and decreased with increasing altitude in the case of over 3 900 m; ④ The NDVI values were the lowest with slopes below 3°, and with an increase in slope, they increased first and then decreased; ⑤ The planar slope aspect displayed the lowest NDVI values, and other slope aspects showed minimal impact on vegetation growth; ⑥ From 2000 to 2022, the vegetation cover in central, southeastern, and northeastern Yunnan was positively correlated with precipitation, suggesting that precipitation in these areas was favorable for vegetation growth. However, the vegetation cover in southwestern and northwestern Yunnan showed a negative correlation with precipitation. Additionally, the vegetation cover in the whole region and various areas was positively correlated with temperature, suggesting that temperature is beneficial to vegetation growth. The results of this study will provide a scientific basis for strengthening ecological environment construction and ecological management in Yunnan Province.

Keywords MODIS NDVI      vegetation change      Theil-Sen trend      Mann-Kendall test      correlation      Yunnan Province     
ZTFLH:  Q948  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yimin LI
Xianjie FENG
Yuanting LI
Xue YANG
Qianying XIANG
Peikun JI
Cite this article:   
Yimin LI,Xianjie FENG,Yuanting LI, et al. Exploring the spatio-temporal variations and influencing factors of vegetation cover in Yunnan Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 116-125.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023037     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/116
Fig.1  Elevation, slope, aspect, temperature, precipitation and land cover
Fig.2  Interannual NDVI changes in Yunnan Province from 2000 to 2022
Fig.3  Spatial distribution of vegetation cover in Yunnan Province
植被分级 面积比例/%
水域或低植被覆盖度 0.19
中低植被覆盖度 1.49
中植被覆盖度 11.78
中高植被覆盖度 57.17
高植被覆盖度 29.37
Tab.1  Proportion of vegetation coverage level in Yunnan Province
Fig.4  Theil-Sen median trend and vegetation cover change in Yunnan Province
S Z NDVI变化趋势特征 面积比例/%
S<0 Z>2.58 极显著减少 1.39
1.96<Z≤2.58 显著减少 0.73
1.65<Z≤1.96 微显著减少 0.52
Z≤1.65 不显著减少 6.03
S=0 Z 无变化 0.16
S>0 Z≤1.65 不显著增加 20.31
1.65<Z≤1.96 微显著增加 6.48
1.96<Z≤2.58 显著增加 14.39
Z>2.58 极显著增加 49.99
Tab.2  Statistics of vegetation change trends in Yunnan Province from 2000 to 2022
Fig.5  Response of NDVI to DEM, slope and aspect
Fig.6  Average annual temperature and average annual precipitation in Yunnan Province
Fig.7  Correlation coefficient between NDVI and average annual temperature and annual precipitation
土地覆被类型 面积占比/% 平均NDVI 平均DEM/m 平均坡度/(°) 平均降水量/mm 平均气温/℃
草地 7.898 0.732 2 273.549 14.195 998.959 12.711
灌木丛 28.841 0.816 1 716.075 13.037 1 196.155 16.007
落叶阔叶林 2.812 0.824 1 708.064 14.838 1 163.265 15.710
常绿阔叶林 14.943 0.865 1 725.792 15.640 1 324.125 16.373
常绿针叶林 28.692 0.826 2 247.938 16.507 1 064.775 13.343
农田 15.647 0.776 1 558.297 10.736 1 096.751 15.728
其他 1.177 0.566 1 743.873 2.917 1 028.880 15.245
Tab.3  Relationship between area share of vegetation types and other factors
Fig.8  Afforestation area of each city in Yunnan Province from 2000 to 2021
[1] Li J J, Peng S Z, Li Z. Detecting and attributing vegetation changes on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 247:260-270.
[2] 杨艳萍, 陈建军, 覃巧婷, 等. 2000—2018年广西植被时空变化及其对地形、气候和土地利用的响应[J]. 农业工程学报, 2021, 37(17):234-241.
[2] Yang Y P, Chen J J, Qin Q T, et al. Temporal and spatial variation of vegetation and its response to topography,climate and land use in Guangxi during 2000—2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17):234-241.
[3] 苗百岭, 梁存柱, 韩芳, 等. 内蒙古主要草原类型植物物候对气候波动的响应[J]. 生态学报, 2016, 36(23):7689-7701.
[3] Miao B L, Liang C Z, Han F, et al. Responses of phenology to climate change over the major grassland types[J]. Acta Ecologica Sinica, 2016, 36(23):7689-7701.
[4] 路洁, 王学凤, 曹永强. 气候和人类活动对辽宁省植被变化的影响[J]. 水利水电科技进展, 2022, 42(4):7-14,38.
[4] Lu J, Wang X F, Cao Y Q. Effects of climate and human activities on vegetation change in Liaoning Province[J]. Advances in Science and Technology of Water Resources, 2022, 42(4):7-14,38.
[5] 金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5):961-974.
doi: 10.11821/dlxb202005006
[5] Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 2020, 75(5):961-974.
doi: 10.11821/dlxb202005006
[6] 逯金鑫, 周荣磊, 刘洋洋, 等. 黄土高原植被覆被时空动态及其影响因素[J]. 水土保持研究, 2023, 30(2):211-219.
[6] Lu J X, Zhou R L, Liu Y Y, et al. Temporal and spatial dynamics of vegetation cover on the Loess Plateau and its influencing factors[J]. Research of Soil and Water Conservation, 2023, 30(2):211-219.
[7] 武锦辉. 基于多源遥感数据的物种多样性及陆表植被恢复力监测研究[J]. 测绘学报, 2022, 51(8):1826.
doi: 10.11947/j.AGCS.2022.20200539
[7] Wu J H. Monitoring species diversity and measuring vegetation resilience with satellite remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8):1826.
doi: 10.11947/j.AGCS.2022.20200539
[8] 郑朝菊, 曾源, 赵玉金, 等. 近15年中国西南地区植被覆盖度动态变化[J]. 国土资源遥感, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
[8] Zheng Z J, Zeng Y, Zhao Y J, et al. Monitoring and dynamic analysis of fractional vegetation cover in southwestern China over the past 15 years based on MODIS data[J]. Remote Sensing for Land and Resources, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
[9] 熊俊楠, 彭超, 程维明, 等. 基于MODIS-NDVI的云南省植被覆盖度变化分析[J]. 地球信息科学学报, 2018, 20(12):1830-1840.
doi: 10.12082/dqxxkx.2018.180371
[9] Xiong J N, Peng C, Cheng W M, et al. Analysis of vegetation coverage change in Yunnan Province based on MODIS-NDVI[J]. Journal of Geo-Information Science, 2018, 20(12):1830-1840.
[10] 赵安周, 刘宪锋, 朱秀芳, 等. 2000—2014年黄土高原植被覆盖时空变化特征及其归因[J]. 中国环境科学, 2016, 36(5):1568-1578.
[10] Zhao A Z, Liu X F, Zhu X F, et al. Spatiotemporal analyses and associated driving forces of vegetation coverage change in the Loess Plateau[J]. China Environmental Science, 2016, 36(5):1568-1578.
[11] 刘哲, 邱炳文, 王壮壮, 等. 2001—2014年间黄土高原植被覆盖状态时空演变分析[J]. 国土资源遥感, 2017, 29(1):192-198.doi:10.6046/gtzyyg.2017.01.29.
[11] Liu Z, Qiu B W, Wang Z Z, et al. Temporal and spatial variation analysis of vegetation cover in the Loess Plateau from 2001 to 2014[J]. Remote Sensing for Land and Resources, 2017, 29(1):192-198.doi:10.6046/gtzyyg.2017.01.29.
[12] Li S S, Yang S N, Liu X F, et al. NDVI-Based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia region,Central China[J]. Remote Sensing, 2015, 7(9):11163-11182.
[13] Pang G J, Wang X J, Yang M X. Using the NDVI to identify variations in,and responses of,vegetation to climate change on the Tibetan Plateau from 1982 to 2012[J]. Quaternary International, 2017, 444:87-96.
[14] Chu H S, Venevsky S, Wu C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015[J]. The Science of the Total Environment, 2019, 650(Pt 2):2051-2062.
doi: S0048-9697(18)33557-5 pmid: 30290347
[15] Zoungrana B J, Conrad C, Thiel M, et al. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso,West Africa[J]. Journal of Arid Environments, 2018, 153:66-75.
[16] 杨红娟, 张成浩. 基于系统动力学的云南生态文明建设有效路径研究[J]. 中国人口·资源与环境, 2019, 29(2):16-24.
[16] Yang H J, Zhang C H. Research on the effective route of ecological civilization construction in Yunnan Province based on System Dynamics[J]. China Population,Resources and Environment, 2019, 29(2):16-24.
[17] 阮宏威, 于静洁. 1992—2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7):1292-1304.
doi: 10.11821/dlxb201907002
[17] Ruan H W, Yu J J. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015[J]. Acta Geographica Sinica, 2019, 74(7):1292-1304.
doi: 10.11821/dlxb201907002
[18] Yang Y J, Wang S J, Bai X Y, et al. Factors affecting long-term trends in global NDVI[J]. Forests, 2019, 10(5):372.
[19] Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013, 100:172-182.
[20] 孟琪, 武志涛, 杜自强, 等. 基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J]. 中国环境科学, 2021, 41(2):826-836.
[20] Meng Q, Wu Z T, Du Z Q, et al. Quantitative influence of regional fractional vegetation cover based on geodetector model:Take the Beijing-Tianjin sand source region as an example[J]. China Environmental Science, 2021, 41(2):826-836.
[21] 黄豪奔, 徐海量, 林涛, 等. 2001—2020年新疆阿勒泰地区归一化植被指数时空变化特征及其对气候变化的响应[J]. 生态学报, 2022, 42(7):2798-2809.
[21] Huang H B, Xu H L, Lin T, et al. Spatio-temporal variation characteristics of NDVI and its response to climate change in the Altay region of Xinjiang from 2001 to 2020[J]. Acta Ecologica Sinica, 2022, 42(7):2798-2809.
[22] 梁守真, 禹定峰, 王猛, 等. 应用遥感时序数据研究植被变化与气候因子的关系——以环渤海地区为例[J]. 国土资源遥感, 2015, 27(3) :114-121.doi:10.6046/gtzyyg.2015.03.19.
[22] Liang S Z, Yu D F, Wang M, et al. Application of remote sensing time — series data to investigate the relationship between vegetation change and climatic factors:A case study of Circum — Bohai Sea area[J]. Remote Sensing for Land and Resources, 2015, 27(3) :114-121.doi:10.6046/gtzyyg.2015.03.19.
[1] LI Weiyang, SHI Haijing, NIE Weiting, YANG Xinyuan. Analyzing the spatio-temporal evolution of surface temperatures in the Yanhe River basin based on the changes in surface parameters[J]. Remote Sensing for Natural Resources, 2024, 36(2): 229-238.
[2] LIU Yujia, XIE Shizhe, DU Yang, YAN Jin, NAN Yanyun, WEN Zhongkai. A two-stage remote sensing image inpainting network combined with spatial semantic attention[J]. Remote Sensing for Natural Resources, 2024, 36(1): 58-66.
[3] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[4] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[5] LI Jingzhi, WANG Miao, FENG Wenjing, LI Bin. The characteristics and driving factors of spatiotemporal changes in the ecosystem service value in Xiangxi, Hunan, China[J]. Remote Sensing for Natural Resources, 2022, 34(3): 207-217.
[6] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[7] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[8] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[9] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[10] WANG Juanjuan, WU Zhaopeng, WANG Shanshan, YIN Huihui. An analysis of the pattern of land-use conflicts in valley oases in arid areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 243-251.
[11] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[12] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[13] GAO Junhua, LIU Shasha, YANG Jinzhong, ZHAO Mingpeng, LIU Xinyue, ZOU Lianxue. Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land & Resources, 2021, 33(1): 183-190.
[14] YING Kui, LI Xudong, CHENG Dongya. Remote sensing assessment of ecological environment quality in karst trough basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 173-182.
[15] Chuan WANG, Jinghui FAN, Simei LIN, Yueming RAO, Huaguo HUANG. Study of the correlation between optical vegetation index and SAR data and the main affecting factors[J]. Remote Sensing for Land & Resources, 2020, 32(2): 130-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech