|
|
|
|
|
|
Analysis and summary of land cover classification systems |
ZANG Mingrun1,2( ), LIAO Yuanhong1, CHEN Zhou1, BAI Yuqi1,3( ) |
1. Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds and Their Habitatses, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China 2. School of Information Engineering, China University of Geosciences Beijing, Beijing 100083, China 3. Tsinghua Urban Institute, Tsinghua University, Beijing 100084, China |
|
|
|
|
Abstract Land cover classification systems constitute a significant aspect of land cover research. This study summarized nine major land cover classification systems. It presented these classification systems along with their relevant data products and analyzed the differences and connections between them. Moreover, this study discussed the relationship of their fineness with spatial resolution and coverage, as well as their semantic consistency. The results indicate that LCCS and Finer Resolution Observation and Monitoring of Global Land Cover(FROM-GLC) excel in fine-scale classification but face technical challenges and implementation difficulties in fine-scale classification based on high spatial resolution data. Current classification systems exhibit significant semantic inconsistencies in logical relationships, fine-scale classification, nomenclature, and code. Global land cover classification research shows the following development trends: the coexistence of globalization and regionalization, finer-scale classification, higher product accuracy, and more detailed temporal and spatial resolution. The semantic consistency of data products needs to be enhanced by strengthening the compatibility of classification systems and finding solutions to data product sharing and interoperability.
|
| Keywords
land cover
classification system
temporal resolution
spatial resolution
data product
semantic consistency
|
|
|
|
Issue Date: 31 December 2025
|
|
|
| [1] |
陈军, 陈晋, 宫鹏, 等. 全球地表覆盖高分辨率遥感制图[J]. 地理信息世界, 2011(2):12-14.
|
| [1] |
Chen J, Chen J, Gong P, et al. Higher resolution global land cover mapping[J]. Geomatics World, 2011(2):12-14.
|
| [2] |
Fisher P, Comber A, Wadsworth R. Land use and land cover:contradiction or complement[M]. 2005:85-98.
|
| [3] |
陈军, 陈晋. GlobeLand30遥感制图创新与大数据分析[J]. 中国科学:地球科学, 2018, 48(10):1391-1392.
|
| [3] |
Chen J, Chen J. GlobeLand30:Operational global land cover mapping and big-data analysis[J]. Scientia Sinica(Terrae), 2018, 48(10):1391-1392.
|
| [4] |
Bounoua L, DeFries R, Collatz G J, et al. Effects of land cover conversion on surface climate[J]. Climatic Change, 2002, 52(1):29-64.
doi: 10.1023/A:1013051420309
|
| [5] |
陈军, 廖安平, 陈晋, 等. 全球30 m地表覆盖遥感数据产品-Globe Land30[J]. 地理信息世界, 2017(1):1-8.
|
| [5] |
Chen J, Liao A P, Chen J, et al. 30-meter global land cover data product-Globe Land30[J]. Geomatics World, 2017(1):1-8.
|
| [6] |
Yang H, Li S N, Chen J, et al. The standardization and harmonization of land cover classification systems towards harmonized datasets:A review[J]. ISPRS International Journal of Geo-Information, 2017, 6(5):154.
doi: 10.3390/ijgi6050154
url: https://www.mdpi.com/2220-9964/6/5/154
|
| [7] |
张景华, 封志明, 姜鲁光. 土地利用/土地覆被分类系统研究进展[J]. 资源科学, 2011, 33(6):1195-1203.
|
| [7] |
Zhang J, Feng Z M, Jiang L G. Progress on studies of land use/land cover classification systems[J]. Resources Science, 2011, 33(6):1195-1203.
|
| [8] |
He C Y, Zhang J X, Liu Z F, et al. Characteristics and progress of land use/cover change research during 1990—2018[J]. Journal of Geographical Sciences, 2022, 32(3):537-559.
doi: 10.1007/s11442-022-1960-2
|
| [9] |
Pérez-Hoyos A, Rembold F, Kerdiles H, et al. Comparison of glo-bal land cover datasets for cropland monitoring[J]. Remote Sensing, 2017, 9(11):1118.
doi: 10.3390/rs9111118
url: https://www.mdpi.com/2072-4292/9/11/1118
|
| [10] |
岳健, 张雪梅. 关于我国土地利用分类问题的讨论[J]. 干旱区地理, 2003, 26(1):78-88.
|
| [10] |
Yue J, Zhang X M. A discussion on the classification of land use in China[J]. Arid Land Geography, 2003, 26(1):78-88.
|
| [11] |
王人潮. 试论土地分类[J]. 浙江大学学报(农业与生命科学版), 2002, 28(4):355-361.
|
| [11] |
Wang R C. Discussion on the land classification[J]. Journal of Zhejiang University (Agric.& Life Sci.), 2002, 28(4):355-361.
|
| [12] |
Deb S, Nathr R. Land use/cover classification:An introduction review and comparison[J]. Global Journals of Research in Engineering, 2012, 12(E1):5-16.
|
| [13] |
Wang J, He T, Zhou Q, et al. Developing land use/cover classification system based on remote sensing data in China[C]// Remote Sensing for Environmental Monitoring,GIS Applications,and Geology IV.SPIE, 2004,5574:52-60.
|
| [14] |
吕玉霞, 张玉贤, 马聪丽, 等. IPCC与我国土地利用分类的对比分析[J]. 地理空间信息, 2022, 20(7):22-25.
|
| [14] |
Lyu Y X, Zhang Y X, Ma C L, et al. Land use classification comparative analysis between IPCC and China[J]. Geospatial Information, 2022, 20(7):22-25.
|
| [15] |
Anderson J R, Hardy E E, Roach J T, et al. A land use and land cover classification system for use with remote sensor data[M]. Washington:U.S.Government Printing Office,1976.
|
| [16] |
Yang L M, Jin S M, Danielson P, et al. A new generation of the United States National Land Cover Database:Requirements,research priorities,design,and implementation strategies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146:108-123.
|
| [17] |
Wickham J, Stehman S V, Sorenson D G, et al. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States[J]. Remote Sensing of Environment, 2021,257:112357.
|
| [18] |
Vogelmann J E, Howard S M, Yang L, et al. Completion of the 1990s national land cover data set for the conterminous United States from Landsat thematic mapper data and ancillary data sources[J]. Photogrammetric Engineering and Remote Sensing, 2001,67:650-655,657-659,661-662.
|
| [19] |
Cunningham D J, Melican J E, Wemmelmann E, et al. GeoCover LC:A moderate resolution global land cover database[C/OL]//Proceedings of the 22nd Annual Esri International User Conference (Esri UC 2002).San Diego,USA, 2002.https://proceedings.esri.com/library/userconf/proc02/pap0811/p0811.htm.
url: https://proceedings.esri.com/library/userconf/proc02/pap0811/p0811.htm
|
| [20] |
Bossard M, Feranec J, Otahel J. CORINE land cover technical guide:Addendum 2000[R/OL]. Copenhagen: European Environment Agency.(2000-05-29)[2025-11-03].https://www.eea.europa.eu/publications/tech40add.
url: https://www.eea.europa.eu/publications/tech40add
|
| [21] |
Büttner G. CORINE land cover and land cover change products[M]//Land Use and Land Cover Mapping in Europe.Dordrecht:Springer Netherlands,2014:55-74.
|
| [22] |
Loveland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data[J]. International Journal of Remote Sensing, 2000, 21(6-7):1303-1330.
doi: 10.1080/014311600210191
url: https://www.tandfonline.com/doi/full/10.1080/014311600210191
|
| [23] |
Friedl M A, Strahler A H, Hodges J C F, et al. ISLSCP II MODIS(Collection 4) IGBP Land Cover,2000—2001[DB/OL].Oak Ridge, TN: ORNL Distributed Active Archive Center, 2010[2025-11-03].https://www.earthdata.nasa.gov/data/catalog/ornl-cloud-modis-landcover-xdeg-968-1.
url: https://www.earthdata.nasa.gov/data/catalog/ornl-cloud-modis-landcover-xdeg-968-1
|
| [24] |
Hansen M C, Reed B. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products[J]. International Journal of Remote Sensing, 2000, 21(6-7):1365-1373.
doi: 10.1080/014311600210218
url: https://www.tandfonline.com/doi/full/10.1080/014311600210218
|
| [25] |
Hansen M C, Defries R S, Townshend J R G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000, 21(6-7):1331-1364.
doi: 10.1080/014311600210209
url: https://www.tandfonline.com/doi/full/10.1080/014311600210209
|
| [26] |
Townshend J, Zhan X, DeFries R. MODIS enhanced land cover and land cover change product algorithm theoretical basis documents (ATBD) version 2.0[R/OL]. Greenbelt, MD: NASA Goddard Space Flight Center / University of Maryland, 1999(1999-05-01)[2025-11-03].https://modis.gsfc.nasa.gov/data/atbd/atbd_mod29.pdf.
url: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod29.pdf
|
| [27] |
Sulla-Menashe D, Friedl M A. User guide to collection 6 MODIS land cover(MCD12Q1 & MCD12C1) product[EB/OL]. 2018(2018-05-14)[2025-11-03].https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf.
url: https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf
|
| [28] |
何宇华, 谢俊奇, 孙毅. FAO/UNEP土地覆被分类系统及其借鉴[J]. 中国土地科学, 2005, 19(6):45-49.
|
| [28] |
He Y H, Xie J Q, Sun Y. FAO/UNEP-land cover classification system (LCCS) and use for reference[J]. China Land Science, 2005, 19(6):45-49.
|
| [29] |
Di Gregorio A, Jansen L J M. Land cover classification system:Classification concepts and user manual(software version 2)[M/OL]. Rome: Food and Agriculture Organization of the United Nations, 2005[2025-11-03].https://www.fao.org/4/y7220e/y7220e00.htm.
url: https://www.fao.org/4/y7220e/y7220e00.htm
|
| [30] |
Herold M, Schmullius C. Report on the harmonization of global and regional land cover products[R/OL].(2004-07-16)[2025-11-03].https://gofcgold.org/sites/default/files/docs/GOLD_20.pdf.
url: https://gofcgold.org/sites/default/files/docs/GOLD_20.pdf
|
| [31] |
Bartholome E, Belward A S. GLC2000:A new approach to global land cover mapping from Earth observation data[J]. International Journal of Remote Sensing, 2005, 26(9):1959-1977.
doi: 10.1080/01431160412331291297
url: https://www.tandfonline.com/doi/full/10.1080/01431160412331291297
|
| [32] |
Tateishi R, Uriyangqai B, Al-Bilbisi H, et al. Production of global land cover data-GLCNMO[J]. International Journal of Digital Earth, 2011, 4(1):22-49.
doi: 10.1080/17538941003777521
url: http://www.tandfonline.com/doi/abs/10.1080/17538941003777521
|
| [33] |
Tateishi R, Hoan N T, Kobayashi T, et al. Production of global land cover Data-GLCNMO2008[J]. Journal of Geography and Geology, 2014, 6(3):p99.
|
| [34] |
Kobayashi T, Tateishi R, Alsaaideh B, et al. Production of global land cover data-GLCNMO2013[J]. Journal of Geography and Geology, 2017, 9(3):1.
|
| [35] |
Defourny P, Lamarche C, Bontemps S, et al. Land Cover CCI:Product user guide,version 2.0[R/OL].(2017-04-10)[2025-11-03].https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf.
url: https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
|
| [36] |
Bontemps S, Herold M, Kooistra L, et al. Revisiting land cover observation to address the needs of the climate modeling community[J]. Biogeosciences, 2012, 9(6):2145-2157.
doi: 10.5194/bg-9-2145-2012
url: https://bg.copernicus.org/articles/9/2145/2012/
|
| [37] |
Defourny P, Schouten L, Bartalev S, et al. Accuracy assessment of a 300 m global land cover map:The GlobCover experience[C]//33rd International Symposium on Remote Sensing of Environment (ISRSE):Sustaining the Millennium Development Goals.Tucson, AZ (United States of America): International Center for Remote Sensing of Environment (ICRSE),2009:JRC54524.
|
| [38] |
Buchhorn M, Smets B, Bertels L, et al. Copernicus global land ser-vice:Land cover 100 m:Version 3 Globe 2015—2019:Product user manual[R/OL].(2020-09-08)[2025-11-03].https://zenodo.org/records/3938963.
url: https://zenodo.org/records/3938963
|
| [39] |
Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30:Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6):2753-2776.
doi: 10.5194/essd-13-2753-2021
|
| [40] |
Liu L Y, Zhang X, Chen X D, et al. GLC_FCS30-2020:Global land cover with fine classification system at 30 m in 2020(v1.2)[DB/OL].(2020-11-18)[2025-11-03].https://zenodo.org/records/4280923.
url: https://zenodo.org/records/4280923
|
| [41] |
Liu H, Gong P, Wang J, et al. Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0[J]. Remote Sensing of Environment, 2021,258:112364.
|
| [42] |
Zanaga D, Van De Kerchove R, De Keersmaecker W, et al. ESA WorldCover 10 m 2020 v100[DB/OL].(2021-10-20)[2025-11-03].https://zenodo.org/records/5571936.
url: https://zenodo.org/records/5571936
|
| [43] |
Latham J, Cumani R, Rosati I, et al. Global Land Cover SHARE (GLC-SHARE) database:Beta-Release version 1.0-2014[EB/OL].[2025-11-03].https://www.fao.org/uploads/media/glc-share-doc.pdf.
url: https://www.fao.org/uploads/media/glc-share-doc.pdf
|
| [44] |
See L, Schepaschenko D, Lesiv M, et al. Building a hybrid land cover map with crowdsourcing and geographically weighted regression[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,103:48-56.
|
| [45] |
Fritz S, McCallum I, Schill C, et al. Geo-Wiki.Org:The use of crowdsourcing to improve global land cover[J]. Remote Sensing, 2009, 1(3):345-354.
doi: 10.3390/rs1030345
url: https://www.mdpi.com/2072-4292/1/3/345
|
| [46] |
Fritz S, McCallum I, Schill C, et al. Geo-Wiki:An online platform for improving global land cover[J]. Environmental Modelling & Software, 2012,31:110-123.
|
| [47] |
Jun C, Ban Y F, Li S N. Open access to earth land-cover map[J]. Nature, 2014, 514(7523):434.
|
| [48] |
许晓聪, 李冰洁, 刘小平, 等. 全球2000年—2015年30 m分辨率逐年土地覆盖制图[J]. 遥感学报, 2021, 25(9):1896-1916.
|
| [48] |
Xu X C, Li B J, Liu X P, et al. Mapping annual global land cover changes at a 30 m resolution from 2000 to 2015[J]. National Remote Sensing Bulletin, 2021, 25(9):1896-1916.
|
| [49] |
Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover:First mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7):2607-2654.
doi: 10.1080/01431161.2012.748992
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2012.748992
|
| [50] |
Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample:Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373.
doi: 10.1016/j.scib.2019.03.002
url: https://linkinghub.elsevier.com/retrieve/pii/S2095927319301380
|
| [51] |
Yu L, Wang J, Gong P. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets:A segmentation-based approach[J]. International Journal of Remote Sensing, 2013, 34(16):5851-5867.
doi: 10.1080/01431161.2013.798055
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2013.798055
|
| [52] |
Yu L, Wang J, Li X C, et al. A multi-resolution global land cover dataset through multisource data aggregation[J]. Science China Earth Sciences, 2014, 57(10):2317-2329.
doi: 10.1007/s11430-014-4919-z
url: http://link.springer.com/10.1007/s11430-014-4919-z
|
| [53] |
Liu H, Gong P, Wang J, et al. Annual dynamics of global land cover and its long-term changes from 1982 to 2015[J]. Earth System Science Data, 2020, 12(2):1217-1243.
doi: 10.5194/essd-12-1217-2020
url: https://essd.copernicus.org/articles/12/1217/2020/
|
| [54] |
Karra K, Kontgis C, Statman-Weil Z, et al. Global land use/land cover with Sentinel 2 and deep learning[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021:4704-4707.
|
| [55] |
Brown C F, Brumby S P, Guzder-Williams B, et al. Dynamic World,Near real-time global 10 m land use land cover mapping[J]. Scientific Data, 2022,9:251.
|
| [56] |
Dong R M, Li C, Fu H H, et al. Improving 3-m resolution land cover mapping through efficient learning from an imperfect 10-m resolution map[J]. Remote Sensing, 2020, 12(9):1418.
doi: 10.3390/rs12091418
url: https://www.mdpi.com/2072-4292/12/9/1418
|
| [57] |
Li Z H, He W, Cheng M F, et al. SinoLC-1:The first 1-meter resolution national-scale land-cover map of China created with a deep learning framework and open-access data[J]. Earth System Science Data, 2023, 15(11):4749-4780.
doi: 10.5194/essd-15-4749-2023
url: https://essd.copernicus.org/articles/15/4749/2023/
|
| [58] |
Zhang Y D, Chen G, Myint S W, et al. UrbanWatch:A 1-meter resolution land cover and land use database for 22 major cities in the United States[J]. Remote Sensing of Environment, 2022,278:113106.
|
| [59] |
Shi Q, Liu M X, Marinoni A, et al. UGS-1m:Fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework[J]. Earth System Science Data, 2023, 15(2):555-577.
doi: 10.5194/essd-15-555-2023
url: https://essd.copernicus.org/articles/15/555/2023/
|
| [60] |
Brandt M, Tucker C J, Kariryaa A, et al. An unexpectedly large count of trees in the West African Sahara and Sahel[J]. Nature, 2020, 587(7832):78-82.
doi: 10.1038/s41586-020-2824-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|