Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 50-60    DOI: 10.6046/zrzyyg.2022214
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于GEE的杭州湾海岸线遥感提取与时空演变分析
朱琳1(), 黄玉玲1, 杨刚1(), 孙伟伟1, 陈超2, 黄可1
1.宁波大学地理与空间信息技术系,宁波 315211
2.苏州科技大学地理科学与测绘工程学院, 苏州 215009
Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology
ZHU Lin1(), HUANG Yuling1, YANG Gang1(), SUN Weiwei1, CHEN Chao2, HUANG Ke1
1. Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
2. School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
全文: PDF(6633 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

持续海岸线动态变化监测对于掌握海岸线变迁规律和演变特征至关重要。长时间序列的海岸线数据集能够在时空维度上详细刻画海岸线的动态变化,进而反映人为活动和自然因素对滨海区域的影响,有利于滨海湿地空间资源的科学管理和可持续发展。该研究基于Google Earth Engine (GEE)平台,利用长时间序列Landsat TM/ETM+/OLI影像,研究了1990—2019年杭州湾海岸线的变化特征; 利用像元级修正归一化水体指数 (modified normalized difference water index,MNDWI)时间序列重构技术方法,结合Otsu算法阈值分割和数字化海岸分析系统,实现长时间序列海岸线信息自动提取和时空变化分析。结果表明,1990—2019年间杭州湾海岸线总长度增加了约20.69 km,陆域面积增加了约764.81 km2,年均增加速率为0.35%,平均终点变化速率和平均线性回归变化速率分别为110.07 m/a和 119.06 m/a。文章通过对30 a间杭州湾海岸线进行时空演变分析,为实现杭州湾海岸线资源的可持续发展和综合管理提供了基础支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱琳
黄玉玲
杨刚
孙伟伟
陈超
黄可
关键词 海岸线杭州湾Google Earth Engine时空演变    
Abstract

The continuous monitoring of the dynamic changes in coastlines is crucial to ascertaining the change patterns and evolution characteristics of coastlines. Long-time-series coastline datasets allow for the detailed description of the dynamic changes in coastlines from the spatio-temporal dimensions and further reflect the effects of human activities and natural factors on coastal areas. Therefore, they are conducive to the scientific management and sustainable development of the spatial resources in coastal wetlands. Based on the Google Earth Engine (GEE), this study analyzed the change in the coastline of Hangzhou Bay during 1990—2019 based on long-time-series Landsat TM/ETM+/OLI images. Using the pixel-level modified normalized difference water index (MNDWI) time series reconstruction technology, this study achieved the automatic information extraction of long-time-series coastlines and the analysis of spatio-temporal changes by combining the Otsu algorithm threshold segmentation and the Digital Shoreline Analysis System. The results show that the total coastline length of Hangzhou Bay increased by about 20.69 km during 1990—2019, corresponding to an increase in the land area by about 764.81 km2, with an average annual increase rate of 0.35%. In addition, the average end point rate (EPR) and linear regression rate (LRR) of the coastline were 110.07 m/a and 119.06 m/a, respectively. The analysis of the spatio-temporal evolution of the coastline in Hangzhou Bay over 30 years will provide a basis for the sustainable development and comprehensive management of resources along the coastline in Hangzhou Bay.

Key wordscoastline    Hangzhou Bay    Google Earth Engine    spatio-temporal evolution
收稿日期: 2022-05-24      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“海岸带高光谱遥感”(42122009);“多时相高光谱遥感自适应解混的滨海湿地精细变化分析”(41971296);“人类活动影响下的群岛区域海岸线时空演变机制分析”(42171311);宁波市科技创新2025重大专项项目“地空星遥感协同的作物病虫害信息智能感知与测报系统研发及示范应用”(2021Z107);宁波市公益项目“多源遥感信息融合的长三角城市群热环境精细监测关键技术研发”(2021S089);中国博士后科学基金项目“顾及先验知识的遥感时间序列数据时域重建方法”(2020M670440);浙江省省属高校基本科研业务费专项资金资助项目“国产高分辨率遥感影像支撑下的大尺度赤潮变化检测方法研究”(SJLZ2022002)
通讯作者: 杨 刚(1986-),男,博士,副教授,研究方向为遥感影像数据质量改善与信息提取理论和方法、遥感滨海健康监测技术与应用研究。Email: yanggang@nbu.edu.cn
作者简介: 朱 琳(1997-),女,硕士研究生,研究方向为海岸带资源与环境监测。Email: zl1003485528@163.com
引用本文:   
朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022214      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/50
Fig.1  研究区示意图
序号 传感器 获取时间 高潮位/cm 时间 序号 传感器 获取时间 高潮位/cm 时间
1 TM 1990/08/14(09: 45: 22) 272 06: 01 16 TM 2005/06/04(10: 12: 51) 324 11: 24
2 TM 1991/09/18(09: 49: 21) 252 08: 50 17 TM 2006/06/23(10: 18: 07) 287 10: 31
3 TM 1992/10/22(09: 46: 50) 319 09: 43 18 TM 2007/07/12(10: 19: 06) 287 10: 31
4 TM 1993/06/03(09: 47: 57) 350 11: 42 19 TM 2008/07/14(10: 12: 16) 278 10: 22
5 TM 1994/05/05(09: 45: 06) 326 08: 09 20 TM 2009/08/18(10: 14: 45) 305 10: 53
6 TM 1995/07/11(09: 30: 25) 300 12: 23 21 TM 2010/08/21(10: 15: 43) 274 10: 09
7 TM 1996/06/11(09: 37: 59) 315 09: 46 22 TM 2011/08/08(10: 14: 18) 287 06: 02
8 TM 1997/07/16(09: 55: 54) 278 10: 22 23 ETM+ 2012/05/14(10: 20: 08) 327 07: 15
9 TM 1998/08/04(10: 03: 45) 287 11: 33 24 ETM+ 2013/07/20(10: 20: 45) 287 11: 33
10 TM 1999/08/23(10: 02: 52) 296 11: 17 25 OLI 2014/07/31(10: 25: 21) 373 15: 23
11 ETM+ 2000/06/14(10: 17: 16) 294 10: 40 26 OLI 2015/07/18(10: 24: 58) 329 14: 22
12 ETM+ 2001/07/03(10: 14: 45) 294 10: 40 27 OLI 2016/07/04(10: 25: 16) 318 12: 57
13 ETM+ 2002/07/22(10: 13: 40) 287 11: 33 28 OLI 2017/07/07(10: 25: 12) 300 12: 23
14 TM 2003/10/21(10: 03: 22) 285 08: 47 29 OLI 2018/07/10(10: 24: 32) 276 09: 44
15 TM 2004/06/01(10: 06: 26) 350 11: 42 30 OLI 2019/07/29(10: 25: 26) 283 10: 02
Tab.1  用于海岸线提取的Landsat影像
Fig.2  海岸线提取技术路线
Fig.3  1990—2019年杭州湾海岸线分布
年份 样本个
数/个
大于2像
元个数
(>60 m)/个
小于1像
元个数
(<30 m)/个
平均
误差/m
准确
度/%
1990年 100 4 92 26.41 92
2000年 100 7 92 24.88 92
2010年 100 7 91 23.53 91
2019年 100 4 96 20.78 96
Tab.2  海岸线提取结果精度评价
Fig.4  1990—2019年杭州湾海岸线长度和面积变化
Fig.5  1990—2019年杭州湾阶段性冲淤情况
Fig.6  1990—2019年杭州湾海岸线变化率分布
Fig.7  1990—2019年杭州湾海岸线变化率
Fig.8  1990—2019年杭州湾重点区域海岸线分布
Fig.9  1990—2019年杭州湾重点区域海岸线变化率
Fig.10  1990—2019年杭州湾年径流量、年输沙量、海岸线长度、面积相关性
[1] Kuleli T, Guneroglu A, Karsli F, et al. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey[J]. Ocean Engineering, 2011, 38(10):1141-1149.
doi: 10.1016/j.oceaneng.2011.05.006
[2] Li J, Ye M, Pu R, et al. Spatiotemporal change patterns of coastlines in Zhejiang Province,China,over the last twenty-five years[J]. Sustainability, 2018, 10(2):477.
doi: 10.3390/su10020477
[3] Sui L, Wang J, Yang X, et al. Spatial-temporal characteristics of coastline changes in Indonesia from 1990 to 2018[J]. Sustainability, 2020, 12(8):3242.
doi: 10.3390/su12083242
[4] Liu L, Xu W, Yue Q, et al. Problems and countermeasures of coastline protection and utilization in China[J]. Ocean and Coastal Management, 2018, 153:124-130.
doi: 10.1016/j.ocecoaman.2017.12.016
[5] 梁立, 刘庆生, 刘高焕, 等. 基于遥感影像的海岸线提取方法综述[J]. 地球信息科学学报, 2018, 20(12):1745-1755.
doi: 10.12082/dqxxkx.2018.180152
Liang L, Liu Q S, Liu G H, et al. Review of coastline extraction methods based on remote sensing images[J]. Journal of Geo-Information Science, 2018, 20(12):1745-1755.
[6] 毋亭, 侯西勇. 海岸线变化研究综述[J]. 生态学报, 2016, 36(4):1170-1182.
Wu T, Hou X Y. Review of research on coastline changes[J]. Acta Ecologica Sinica, 2016, 36(4):1170-1182.
[7] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.
Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.
[8] Toure S, Diop O, Kpalma K, et al. Shoreline detection using optical remote sensing:A review[J]. ISPRS International Journal of Geo-Information, 2019, 8(2):75.
doi: 10.3390/ijgi8020075
[9] 高义, 王辉, 苏奋振, 等. 中国大陆海岸线近30 a的时空变化分析[J]. 海洋学报, 2013, 35(6):31-42.
Gao Y, Wang H, Su F Z, et al. Spatial and temporal of continental coastline of China in recent three decades[J]. Acta Oceanologica Sinica, 2013, 35(6):31-42.
[10] 陈超, 陈慧欣, 陈东, 等. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2):141-152.doi:10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
Chen C, Chen H X, Chen D, et al. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing for Land and Resources, 2021, 33(2):141-152.doi:10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
[11] Wang D. Remote sensing of the coastline variation of the Guangdong-Hongkong-Macao Greater Bay Area in the past four decades[J]. Journal of Marine Science and Engineering, 2021, 9(12):1318.
doi: 10.3390/jmse9121318
[12] Vos K, Harley M D, Splinter K D, et al. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery[J]. Coastal Engineering, 2019, 150:160-174.
doi: 10.1016/j.coastaleng.2019.04.004
[13] Wei X, Zheng W, Xi C, et al. Shoreline extraction in SAR image based on advanced geometric active contour model[J]. Remote Sensing, 2021, 13(4):642.
doi: 10.3390/rs13040642
[14] Sagar S, Roberts D, Bala B, et al. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations[J]. Remote Sensing of Environment, 2017, 195:153-169.
doi: 10.1016/j.rse.2017.04.009
[15] Sekovski I, Stecchi F, Mancini F, et al. Image classification metho-ds applied to shoreline extraction on very high-resolution multispectral imagery[J]. International Journal of Remote Sensing, 2014, 35(10):3556-3578.
doi: 10.1080/01431161.2014.907939
[16] Nguyen H Q, Takewaka S. Shoreline changes along northern Ibaraki coast after the great East Japan Earthquake of 2011[J]. Remote Sensing, 2021, 13(7):1399.
doi: 10.3390/rs13071399
[17] Donchyts G, van de Giesen N, Gorelick N. Reconstruction of reservoir and lake surface area dynamics from optical and SAR satellite imagery[C]// International Workshop on the Analysis of Multitemporal Remote Sensing Images, 2017.
[18] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986 (6):679-698.
pmid: 21869365
[19] Dai C, Howat I M, Larour E, et al. Coastline extraction from repeat high resolution satellite imagery[J]. Remote Sensing of Environment, 2019, 229:260-270.
doi: 10.1016/j.rse.2019.04.010
[20] Xu N. Detecting coastline change with all available Landsat data over 1986—2015:A case study for the state of Texas,USA[J]. Atmosphere, 2018, 9(3):107.
doi: 10.3390/atmos9030107
[21] Jiang W, Ni Y, Pang Z, et al. An effective water body extraction method with new water index for Sentinel-2 imagery[J]. Water, 2021, 13(12):1647.
doi: 10.3390/w13121647
[22] Bishop-Taylor R, Nanson R, Sagar S, et al. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery[J]. Remote Sensing of Environment, 2021, 267:112734.
doi: 10.1016/j.rse.2021.112734
[23] Ghosh M K, Kumar L, Roy C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101:137-144.
doi: 10.1016/j.isprsjprs.2014.12.009
[24] Cao W, Zhou Y, Li R, et al. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images[J]. Remote Sensing of Environment, 2020, 239:111665.
doi: 10.1016/j.rse.2020.111665
[25] Guo Q. Bangladesh shoreline changes during the last four decades using satellite remote sensing data[D]. Columbus: The Ohio State University, 2017.
[26] Chunye W, Delu P. Zoning of Hangzhou Bay ecological red line using GIS-based multi-criteria decision analysis[J]. Ocean and Coastal Management, 2017, 139:42-50.
doi: 10.1016/j.ocecoaman.2017.01.013
[27] Chu L, Oloo F, Sudmanns M, et al. Monitoring longterm shoreline dynamics and human activities in the Hangzhou Bay,China,combining daytime and nighttime EO data[J]. Big Earth Data, 2020, 4(3):242-264.
doi: 10.1080/20964471.2020.1740491
[28] Wang X, Liu Y, Ling F, et al. Spatiotemporal change detection of Ningbo coastline using Landsat time-series images during 1976—2015[J]. ISPRS International Journal of Geo-Information, 2017, 6(3):68.
doi: 10.3390/ijgi6030068
[29] 贾明明, 刘殿伟, 王宗明, 等. 面向对象方法和多源遥感数据的杭州湾海岸线提取分析[J]. 地球信息科学学报, 2013, 15(2):262-269.
doi: 10.3724/SP.J.1047.2013.00262
Jia M M, Liu D W, Wang Z M, et al. Coastline changes in Hangzhou Bay based on object-oriented method using multi-source remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(2):262-269.
doi: 10.3724/SP.J.1047.2013.001262
[30] Qiu L, Zhang M, Zhou B, et al. Economic and ecological trade-offs of coastal reclamation in the Hangzhou Bay,China[J]. Ecological Indicators, 2021, 125:107477.
doi: 10.1016/j.ecolind.2021.107477
[31] Zhou Y, Dong J, Xiao X, et al. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine[J]. Science of the Total Environment, 2019, 689:366-380.
doi: 10.1016/j.scitotenv.2019.06.341
[32] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27
doi: 10.1016/j.rse.2017.06.031
[33] 徐涵秋. 利用改进的归一化差异水体指数 (MNDWI) 提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[34] Zhou J, Jia L, Menenti M. Reconstruction of global MODIS NDVI time series:Performance of harmonic analysis of time series (HANTS)[J]. Remote Sensing of Environment, 2015, 163:217-228.
doi: 10.1016/j.rse.2015.03.018
[35] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1979, 9(1):62-66.
doi: 10.1109/TSMC.1979.4310076
[36] Nausheen N, Seal A, Khanna P, et al. A FPGA based implementation of Sobel edge detection[J]. Microprocessors and Microsystems, 2018, 56:84-91.
doi: 10.1016/j.micpro.2017.10.011
[37] Himmelstoss E A, Henderson R E, Kratzmann M G, et al. Digital Shoreline Analysis System (DSAS) version 5.0 user guide[R]. U.S.Department of the Interior: U.S.Geological Survey, 2018.
[38] Zhu Q, Li P, Li Z, et al. Spatiotemporal changes of coastline over the Yellow River Delta in the previous 40 years with optical and SAR remote sensing[J]. Remote Sensing, 2021, 13(10):1940.
doi: 10.3390/rs13101940
[39] 丁小松, 单秀娟, 陈云龙, 等. 基于数字化海岸分析系统(DSAS)的海岸线变迁速率研究:以黄河三角洲和莱州湾海岸线为例[J]. 海洋通报, 2018, 37(5):565-575.
Ding X S, Shan X J, Chen Y L, et al. Study on the change rate of shoreline based on Digital Coastal Analysis System (DSAS):Taking the shoreline of the Yellow River Delta and Laizhou Bay as an example[J]. Marine Science Bulletin, 2018, 37(5):565-575.
[40] 谢东风, 高抒, 潘存鸿, 等. 杭州湾沉积物宏观输运的数值模拟[J]. 泥沙研究, 2012(3):51-56.
Xie D F, Gao S, Pan C H, et al. Modelling macroscale suspended sediment transport patterns in Hangzhou Bay,China[J]. Journal of Sediment Research, 2012(3):51-56.
[41] Xie D, Gao S, Wang Z B, et al. Morphodynamic modeling of a large inside sand bar and its dextral morphology in a convergent estuary:Qiantang Estuary,China[J]. Journal of Geophysical Research, 2017, 122(8):1553-1572.
[42] 胡成飞, 潘存鸿, 吴修广, 等. 1959—2019年杭州湾南岸滩涂演变规律及机制[J]. 水科学进展, 2021, 32(2):230-241.
Hu C F, Pan C H, Wu X G, et al. Evolution law and mechanism of tidal flats on the south bank of Hangzhou Bay from 1959 to 2019[J]. Advances in Water Science, 2021, 32(2):230-241.
[43] Chaudhry M H. Open-channel flow[M]. New York: Springer, 2008.
[44] Jilan S, Kangshan W. Changjiang River plume and suspended sediment transport in Hangzhou Bay[J]. Continental Shelf Research, 1989, 9(1):93-111.
doi: 10.1016/0278-4343(89)90085-X
[45] Xie D, Pan C, Wu X, et al. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years[J]. Journal of Geophysical Research:Oceans, 2017, 122(4):2999-3020.
doi: 10.1002/2016JC012264
[46] 叶翔, 王爱军, 马牧, 等. 高强度人类活动对泉州湾滨海湿地环境的影响及其对策[J]. 海洋科学, 2016, 40(1):94-100.
Ye X, Wang A J, Ma M, et al. Effects of high-intensity human activities on the environment variations of coastal wetland in the Quanzhou Bay,China[J]. Marine Sciences, 2016, 40(1):94-100.
[47] Shahtahmassebi A R, Wu C, Blackburn G A, et al. How do modern transportation projects impact on development of impervious surfaces via new urban area and urban intensification? Evidence from Hangzhou Bay Bridge,China[J]. Land Use Policy, 2018, 77:479-497.
doi: 10.1016/j.landusepol.2018.05.059
[48] Tian P, Li J, Cao L, et al. Impacts of reclamation derived land use changes on ecosystem services in a typical gulf of eastern China:A case study of Hangzhou bay[J]. Ecological Indicators, 2021, 132:108259.
doi: 10.1016/j.ecolind.2021.108259
[1] 赵安周, 张向蕊, 相恺政, 刘宪锋, 张靓涵. 基于夜间灯光和统计数据的黄土高原城镇化水平时空格局分析[J]. 自然资源遥感, 2023, 35(3): 253-263.
[2] 闫柏琨, 甘甫平, 印萍, 葛晓立, 郭艺, 白娟. 1989—2021年中国大陆海岸带潮滩、海岸线、养殖水体遥感观测[J]. 自然资源遥感, 2023, 35(3): 53-63.
[3] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[4] 张琼艺, 李昆, 雍志玮, 熊俊楠, 程维明, 肖坤洪, 刘东丽. 基于夜光遥感数据的西南地区多维贫困测度及时空演变分析[J]. 自然资源遥感, 2022, 34(4): 286-298.
[5] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[6] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[7] 朱琦, 郭华东, 张露, 梁栋, 刘栩婷, 万祥星. 基于多时相Landsat8影像的海南岛热带天然林类型遥感分类[J]. 自然资源遥感, 2022, 34(2): 215-223.
[8] 覃纹, 黄秋燕, 覃志豪, 刘剑洪, 韦高杨. 广西糖料蔗种植区干旱遥感时空分析[J]. 自然资源遥感, 2022, 34(2): 261-270.
[9] 方梦阳, 刘晓煌, 孔凡全, 李明哲, 裴小龙. 一种基于GEE平台制作逐年土地覆盖数据的方法——以黄河流域为例[J]. 自然资源遥感, 2022, 34(1): 135-141.
[10] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[11] 布自强, 白林波, 张佳瑜. 基于夜光遥感的宁夏沿黄城市群时空演变[J]. 自然资源遥感, 2022, 34(1): 169-176.
[12] 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1): 18-26.
[13] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[14] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[15] 牟晓莉, 李贺, 黄翀, 刘庆生, 刘高焕. Google Earth Engine在土地覆被遥感信息提取中的研究进展[J]. 国土资源遥感, 2021, 33(2): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发