Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1992, Vol. 4 Issue (3) : 31-36     DOI: 10.6046/gtzyyg.1992.03.07
Mineral Exploration and Prediction |
SIR-A Experiment NASA Jet Propulsion Laboratory 1983 THE FINDING OF CHUANLI RING(BRUSH) STRUCTURE AND STUDYING FOR THE INTERPRETATIVE FEATURES OF IMAGING RADAR IMAGE
Shi Jizhong
Hebei geological college
Download: PDF(1537 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This paper discusses and analyses the factors of the influence upon the geometric shape (slope.aspect) of targets on the imging radar(SIR-A) image. surface roughness. physical and electric characteristics of targets and the interpretative features on SIR-Aimage in bedrock area. The Chuanli ring structure is found. It is difficult to show the ring strueture on the other remotely Sensed image. Combining geological conditions of regional minerogenesis, The Conceal matrix and mineral deposit are prospected in study arear.

Keywords Desertification      Yellow river drainage area      Remote sensing      Dynamic change     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Yong-Jun
ZHOU Qiang
YANG Ri-Hong
LI Fa-Ling
Cite this article:   
SUN Yong-Jun,ZHOU Qiang,YANG Ri-Hong, et al. SIR-A Experiment NASA Jet Propulsion Laboratory 1983 THE FINDING OF CHUANLI RING(BRUSH) STRUCTURE AND STUDYING FOR THE INTERPRETATIVE FEATURES OF IMAGING RADAR IMAGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 1992, 4(3): 31-36.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1992.03.07     OR     https://www.gtzyyg.com/EN/Y1992/V4/I3/31


[1] 谢寿生、徐永进:微波遥感技术与应用,电子工业出版社,1987, Pp. 133-157

[2] 物探化探遥感地质文摘编辑部:侧视雷达在地学中的应用,1986, PP.22~43 PP. 106~115

[3] 河北省地质矿产局:河北省北京市天津市区域地质志,地质出版社,1989

[4] 苏和、王文亮.基础物理手册,内蒙古人民出版社,1982, p. 541

[5] 尤·符·霍夫曼著:郭新凯等译,物理学定律、公式、题解,吉林人民出版社,1980, pp. 728~732

[6] J·丹蒂瑟编:戴雪文等译,英汉物理学词典,上海翻译出版公司,1986, p. 14, p. 35, p. 107

[7] 王鑫:遥侧学,大中国图书公司印行,1977, PP. 182~189

[8] 〔日〕应用物理学会光学讨论会编辑:杨雄里译,生理光学——眼的光学与视觉,科学出版社,1980, PP.248~249

[9] J. P. Ford, J. B. Cimino, C. Elachi:Space Shuttle Columbia Views World With Imaging Radar,the SIR—A Experiment NASA Jet Propulsionb Laboratory 1983

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech