Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1996, Vol. 8 Issue (3) : 29-33     DOI: 10.6046/gtzyyg.1996.03.05
Applied Research |
USING NOAA-AVHRR DATA TO MONITOR DYNAMIC CHANGES OF DIANCHI LAKE
Zhao Hongxu
Meteorological Institute of Yunnan Province, Kunming 650034
Download: PDF(796 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using one year NOAA-AVHRR data of channel 1, 2, 4 and the method of image enhancement, we study the temprature, area, algal and silt of Dianchi Lake. Though the resolution of NOAA satellite is not very high, it has superiority in monitoring dynamic change of lake water.

Keywords  Sandy desertification assessment      Remote sensing      Vegetation cover percentage      Biomass retrieval      Vegetation index      Regression model     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LONG Jing
LIU Jing-Hua
WANG Zhu-Wen
TIAN Gang
DING Yang
WANG Bang-Bing
Cite this article:   
LONG Jing,LIU Jing-Hua,WANG Zhu-Wen, et al. USING NOAA-AVHRR DATA TO MONITOR DYNAMIC CHANGES OF DIANCHI LAKE[J]. REMOTE SENSING FOR LAND & RESOURCES, 1996, 8(3): 29-33.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1996.03.05     OR     https://www.gtzyyg.com/EN/Y1996/V8/I3/29


[1] P. K. Rao等编,许健民等译,气象卫星-系统、资料用其在环境中的应用,北京:气象出版社,1994,368-378


[2] Assel, R. A.,Great Lakes Ice Atlas. NOAA, Great Lakes Environ. Res. Lab,Ann Arbor, MI, 1993,115


[3] Strong. A. E.,and B. 1. Eadie, Satellite Observationsof Calcium Carbonate Precipitationsinthe Great Lakes. Lirnnol. Ocearngraphy. 1978(23):877-887


[4] Strong. A. E. , Remote Sensingof Algal Bkrorns Aircraftand Satellitein Lake Erieand Utah Lake. Remote Sensingof Envirorunent.,1974(3):99-107


[5] 徐希孺主编.环境监测与作物估产的遥感研究论文集,北京:北京大学出版社.1991


[6]
[日]遥感研究会编.刘勇卫、贺雪鸿译.遥感精解.北京:测绘出版社,1993,114-115

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[10] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[11] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[12] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[13] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[14] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[15] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech