Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1998, Vol. 10 Issue (3) : 31-36     DOI: 10.6046/gtzyyg.1998.03.08
Resources and Environment |
THE METHOD OF TECTONIC INTERPRETATION AND ITS APPLICATION IN THE ZHONGTIAOSHAN COPPER RESOURCE
Li Zhizhong1, Zhou Ping2
1. Center for Remote Sensing in Geology, Beijing 100083;
2. China University of Geosciences, Beijing 100083
Download: PDF(432 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The authors studied the evolution rules of geological structure by analysis of the structures of the Northern section of Zhongtiaoshan from remote sensing image, then built the model of the structure and analysed its time and spatical character. In the end, the authors predicted the favourable mineralizing region by means of multivariate statistical analysis combined with the characteristics of stressfield, structure controlling deposits of typical ore district.

Keywords Remote sensing      GIS             Linzhi district             AHP      AMFP             Estimate of regional geo-hazards     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yuan-Hua
JIANG Qi-Gang
YANG Shao-Ping
Cite this article:   
LI Yuan-Hua,JIANG Qi-Gang,YANG Shao-Ping. THE METHOD OF TECTONIC INTERPRETATION AND ITS APPLICATION IN THE ZHONGTIAOSHAN COPPER RESOURCE[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(3): 31-36.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1998.03.08     OR     https://www.gtzyyg.com/EN/Y1998/V10/I3/31


[1] J. Remsay等,徐树桐等译.现代构造地质学。第二卷,断裂和摺皱作用北京:地质出版社,1993

[2] 李昌年.火成岩徽f元素岩石学.武汉:中国地质大学出版社,1992

[3] 卢良兆.变质作用的PTt演化及地质动力学.见肖庆辉等主编,当代地质科学前缘.武汉:中国地质大学出版社,1993,326-331

[4] 刘建华等。秦岭-大别造山带及其南北缘地反层析成像.地球物理学报,1995,38(1)

[5] 马文琪.区城构造解析—方法、理论和中国板块构造.北京:地质出版社,1992

[6] 马杏坦等.论滑砚及岩石圈内多层次滑脱构造.地质学报,1984, (3)

[7] 邵济安等.造山带的伸展构造与软沈圈隆起—以兴象造山带为例.科学通报,1994,39(6)

[8] 单文琅,宋鸿林等·构造变形分析的理论、方法和实践·武汉:中国地质大学出版社,1992

[9] 宋鸿林.变质核杂岩研究进展、基本特征及成因探讨.地学前缘,1995,(2),1-2

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[8] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[9] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[10] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[11] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[12] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[13] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[14] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[15] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech