Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2001, Vol. 13 Issue (2) : 1-8,64     DOI: 10.6046/gtzyyg.2001.02.01
Technology Application |
THE DIVISION AND EVALUATION OF ECOLOGICAL ENVIRONMENT IN JIANGXI PROVINCE
LIN Zi-yu, XU Jin-shan
270 Research Institute of CNNC, Nanchang 330200, China
Download: PDF(1080 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

On the basis of analysis of remote sensing image and DEM, and by combining with the cluster analysis of the main factors to the ecological environment, the division and evaluation of ecological environment in Jiangxi province have been done in this paper according to the heterogeneity among landscapes and the similarity of interior landscapes with the principle and method of landscape ecology. All of this provides the objective basis for Jiangxi province government to make a long term planning on the construction of ecological economy, to effectively solve the problems of ecological environment and to make the decisions on the development of social economy and protection of the ecological environment.

Keywords Three-River basin in southwest China      Geological environment      Remote sensing      Stability      Evaluation       
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zhi
HUANG Jie
PANG Bei
WEN Hui
FAN Min
HAN Lei
LUO Wei-bin
LI Qing-chun
Cite this article:   
LIU Zhi,HUANG Jie,PANG Bei, et al. THE DIVISION AND EVALUATION OF ECOLOGICAL ENVIRONMENT IN JIANGXI PROVINCE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(2): 1-8,64.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2001.02.01     OR     https://www.gtzyyg.com/EN/Y2001/V13/I2/1



[1] 江西省地质矿产局.江西省区域地质志[M].北京:地质出版社,1984.



[2] 中国21世纪议程管理中心.论中国的可持续发展[M].北京:海洋出版社,1994,4.



[3] 中国自然资源丛书编辑委员会.中国自然资源丛书.江西卷[M].北京:中国环境科学出版社,1995,2.



[4] 谢小凡.人口*资源*环境[M].北京:21世纪出版社,1995,8.



[5] 关伯仁.环境科学基础教程[M].北京:中国环境科学出版社,1997,2.



[6] 郑度.自然地域系统研究[M].北京:中国环境科学出版社,1997,4.



[7] 赵跃龙.中国脆弱生态环境类型分布及其综合整治[M].北京:中国环境科学出版社,1999,4.



[8] 夏军.区域水环境及生态环境质量评价--多级关联评估理论与应用[M].武汉:武汉水利电力出版社,1999,6.



[9] 黄耀春.新中国五十年的江西[M].北京:中国统计出版社,1999,7.



[10] 黄耀春.江西省统计年鉴--1999[M].北京:中国统计出版社,1999,7.



[11] 赵锐.中国环境与资源遥感应用[M].北京:气象出版社,1999,8.



[12] 陆雍森.环境评价[M].上海:同济大学出版社,1999,9.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[3] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[4] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[5] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[6] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[7] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[8] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[9] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[10] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[11] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[12] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[13] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[14] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[15] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech