Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (s1) : 77-81     DOI: 10.6046/gtzyyg.2010.s1.18
Technology Application |
The Neotectonic Process Causing the Conversion of the Qinghai Lake from an Outflow Lake into an Interior Lake
 ZHANG Kun, SUN Yan-Gui, JU Sheng-Cheng, MA Shi-Bin, YU Jing-Hui
Institute of Geological Survey of Qinghai Province, Xining 810012, China
Download: PDF(1066 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

 The assumption that the Qinghai Lake was once a drained lake and later became an interior lake due to the uplift

of the Riyue Mountain has been widely accepted in the past. In this paper, the ancient fluvial facies and lacustrine facies

were explored in its dimensional layout on the basis of some satellite data from ETM and ASTER. Statistical analysis of its

sedimentary characteristics and chronostratigraphic studies indicate that the main stream of the Yellow River was the Buha

River, which passed through the Qinghai Lake and connected the major stream course of the Yellow River in Guide Basin at

0.10 Ma. Along with the uplift of the Riyue Mountain, the Qinghai Lake became an interior lake and shrank rapidly; at the

same time, the Yellow River was forced to cut through Longyang Valley and continued its development in Gonghe Basin.

Keywords Remote sensing      Landslide      Barrier lake      Loulan City     
:  TP 79  
Issue Date: 13 November 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
ZHANG Kun, SUN Yan-Gui, JU Sheng-Cheng, MA Shi-Bin, YU Jing-Hui. The Neotectonic Process Causing the Conversion of the Qinghai Lake from an Outflow Lake into an Interior Lake[J]. REMOTE SENSING FOR LAND & RESOURCES,2010, 22(s1): 77-81.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.s1.18     OR     https://www.gtzyyg.com/EN/Y2010/V22/Is1/77

[1]孙健初.青海湖[J].地质论评,1938,3(5):122-134.


[2]陈克造,黄第藩,梁狄刚. 青海湖的形成和发展[J].地理学报,1964,30(3):214-233.


[3]胡东生.青海湖的地质演变[J].干旱区地理,1989,12(2):29-36.


[4]袁宝印,陈克造, Bowler J M,等.青海湖的形成与演化趋势[J].第四纪研究,1990(3):233-242.


[5]边千韬,刘嘉麒,罗小全,等.青海湖的地质构造背景及形成演化[J].地震地质,2000, 22 (1):20-26.


[6]安芷生,王平,沈吉,等. 青海湖湖底构造及沉积物分布的地球物理勘探研究[J]. 中国科学D辑地球科学,2006,36(4):332-341.


[7]潘保田.贵德盆地地貌演化与黄河上游发育研究[J].干旱区地理,1994, 17(3):43-50.


[8]李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑),1996, 26 (4): 316-322.


[9]施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999, 54(1):10-20.


[10]李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001, 21(5):381-391.


[11]周笃珺,马海州,高东林,等.青海湖南岸全新世黄土地球化学特征及气候环境意义[J].中国沙漠,2004, 24 (2):144-148.


[12]潘保田,高红山,李炳元,等.青藏高原层状地貌与高原隆升[J].第四纪研究,2004,23(1):50-58.


[13]王苏民,施雅风.晚第四纪青海湖演化研究析视与讨论[J].湖泊科学,1992,4(3):1-9.


[14]李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质,1999,19(1):1-11.


[15]徐叔鹰,徐德馥,石生仁.共和盆地地貌发育与环境演化探讨[J].兰州大学学报,1984,20(1):146-157.


[16]孙延贵,方洪宾,张焜,等. 共和盆地层状地貌系统与青藏高原隆升及黄河发育[J].中国地质 ,2007, 34 (6):1137-1143.


[17]袁宝印,王振海.青藏高原隆起与黄河地文期[J].第四纪研究,1995,15(4):353-359.


[18]肖序常,王军.青藏高原构造演化及隆升的简要评述[J].地质论评,1998, 44(4):372-381.


[19]袁道阳,石玉成,刘百篪.青藏高原东北缘地区晚第四纪水系沉积物年代标尺的初步研究[J].地震地质,1999,21(1):1-8.


[20]袁道阳,刘小龙,张培震,等.青海热水日月山断裂带的新活动特征[J].地震地质,2003,25(1):155-165.


[21]赵振明,刘百篪.对龙羊峡形成的初步认识[J].西北地质,2005,38(2):24-32


[22]师永民,王新民,宋春晖. 青海湖湖区风成沙堆积[J]. 沉积学报, 1996,14(增刊):234-238.


[23]张智勇,于庆文,张克信,等.黄河上游第四纪河流地貌演化[J]. 地球科学——中国地质大学学报,2003,28(6):621-636.


[24]山发寿,杜乃秋,孔昭宸.青海湖盆地35万年来的植被演化及环境变迁[J].湖泊科学,1993,5(1):9-17.


[25]赵振明,李荣社.青藏高原北部不同地区河流和湖岸阶地的演化特征[J].地质通报,2006,25(1,2):221-225.


[26]王萍,蒋汉朝,苏旭,等.末次间冰期以来西宁市河谷沉积与环境[J].第四纪研究, 2008,28(2):253-263.


[27]鹿化煜,安芷生,王晓勇,等.最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J].中国科学(D辑), 2004,34(9):855-864.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech