Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (s1) : 213-218     DOI: 10.6046/gtzyyg.2010.s1.44
Technology Application |

A Remote Sensing Analysis of Wetlands Dynamic Changes and Mechanism in the Past 32 Years in Bosten Lake, Xinjiang
 ZENG Guang, GAO Hui-Jun, ZHU Gang, JIN Mou-Shun
Aerophotography and Remote Sensing of China Coal Shaanxi, Xi’an 710054, China
Download: PDF(799 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on remote sensing images of 1975(MSS), 2000(ETM) and 2007(CBERS-2), this paper interpreted lake wetland,

marsh wetland, river wetland and cultivated land of Bosten Lake at the scale of 1∶50000. Some conclusions have been

reached:The areas of lake wetland, marsh wetland and river wetland have decreased gradually, while cultivated land has

increased significantly in the past 32 years. During the period from 1975 to 2000, the areas of lake wetland and total

wetlands increased by a small margin, and cultivated land increased by 454.52 km2, but marsh wetland and river wetland

decreased by 23.71 km2 and 18.44 km2 respectively. The resources of wetlands were destroyed seriously from 2000 to 2007.

During these 7 years, lake wetland, river wetland, marsh wetland and total wetlands decreased considerably whereas

cultivated land increased by more than 526.55 km2. The deterioration velocities of marsh wetland and river wetland were

37.13 and 5.24 times higher than the velocities during 1975~2000. Natural factors and human activities were two important

factors responsible for the serious degradation of wetlands. Wetland-agriculture and wetland-desertification constituted

two processes of wetland degradation.

Keywords Underground coal fire      Thermal field modeling      Remote sensing     
:  TP 79  
Issue Date: 13 November 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Hai-qiao
WANG Zuo-tang
JI Jing-xian
Cite this article:   
TAN Hai-qiao,WANG Zuo-tang,JI Jing-xian.
A Remote Sensing Analysis of Wetlands Dynamic Changes and Mechanism in the Past 32 Years in Bosten Lake, Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 213-218.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.s1.44     OR     https://www.gtzyyg.com/EN/Y2010/V22/Is1/213

[1]赵其国,高俊峰.中国湿地资源的生态功能及其分区[J].中国生态农业学报,2007,15(1):1-4.


[2]贾忠华,罗纨,王文焰,等.对湿地定义和湿地水文特征的探讨[J].水土保持学报,2001,15(6):117-120.


[3]万洪秀,孙占东,王润.博斯腾湖湿地生态脆弱性评价研究[J].干旱区地理,2006,29(2):248-254.


[4]王兴菊,许士国,张奇.湿地水文研究进展综述[J].水文,2006,26(4):1-5.


[5]周洪华,陈亚宁,李卫红.新疆铁干里克绿洲水文过程对土壤盐渍化的影响[J].地理学报,2008,63(7):714-724.


[6]杨光华,包安明,陈曦,等.新疆博斯腾湖湿地生态质量的定量评价[J].干旱区资源与环境,2009,23(2):119-124.


[7]张柏.遥感技术在中国湿地研究中的应用[J].遥感技术与应用,1996,11(1):67-71.


[8]刘玉安,塔西甫拉提·特依拜,沈涛,等.基于“3S”技术的于田绿洲湿地动态变化研究[J].中国沙漠,2005,25(5):706-710.


[9]周可法,吴世新,李静,等.新疆湿地资源时空变异研究[J].干旱区地理,2004,27(3):405-408.


[10]何瑛.全球气候变化下的新疆湿地演变特征初步分析——以博斯腾湖湿地为例[D].乌鲁木齐:新疆师范大学,2005.


[11]孙志高,刘景双,李彬.中国湿地资源的现状、问题与可持续利用对策[J].干旱区资源与环境,2006,20(2):83-88.


[12]裴新国,闫晓燕.博斯腾湖生态环境的演变[J].干旱区研究,1992(4):57-62.


[13]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.


[14]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步评估[J].冰川冻土,2002,24(3):219-226.


[15]施雅风,沈永平,李栋梁,等.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社,2003.


[16]曹明奎,李克让.陆地生态系统与气候相互作用的研究进展[J].地理科学进展,2000,15(4):443-451.


[17]王利花,姜琦刚,李远华.基于RS与GIS技术的若尔盖地区沼泽动态变化研究[J].国土资源遥感,2006(4):60-62.


[18]陈桂琛,彭敏,李来兴.青海湖湿地环境特征及其保护与合理利用[G]∥中国湿地研究.长春:吉林科学技术出版社,1995.


[19]王润,孙占东,高前兆.2002年前后博斯腾湖水位变化及其对中亚气候变化的响应[J].冰川冻土,2006,28(3):324-329.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech