Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (3) : 61-66     DOI: 10.6046/gtzyyg.2011.03.11
Technology and Methodology |
A Quantitative Method for Grassland LAI Inversion Based on CHRIS/PROBA Data
LI Xin-hui, SONG Xiao-ning, LENG Pei
College of Resources and Environment, Graduate School of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(1349 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on the CHRIS/PROBA hyperspectral remote sensing data,the authors retrieved the leaf area index (LAI) by A two-layer Canopy Reflectance Model (ACRM). The process consists of three main steps: Firstly,the high-spectral data was preprocessed and statistically analyzed. Secondly,sensitivity of the model to observing directions was analyzed. And finally,the best combinations of bands and parameters for the study area were chosen. The process was used to study the LAI of typical grass plots of Xilin River basin in Inner Mongolia. The results show that the application of CHRIS/PROBA data to the inversion of sparse grassland LAI is practical,and the multi-angle information of CHRIS/PROBA data has the potential advantages in decreasing the extent of LAI underestimation.

Keywords Remote sensing      Precision farming      Review      Outlook     
: 

TP 701

 
Issue Date: 07 September 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MENG Ji-hua
WU Bing-fang
DU Xin
ZHANG Fei-fei
ZHANG Miao
DONG Tai-feng
Cite this article:   
MENG Ji-hua,WU Bing-fang,DU Xin, et al. A Quantitative Method for Grassland LAI Inversion Based on CHRIS/PROBA Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 61-66.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.03.11     OR     https://www.gtzyyg.com/EN/Y2011/V23/I3/61


[1] Cramer W,Kicklighter D W,Bondeau A.Comparing Global Models of Terrestrial Net Primary Productivity(NPP):Overview and Key Results
[J].Global Change Biology,1999,5(S1),1-15.

[2] Seller P J,Randall D A,Collata G J,et al.A Revised Land Surface Parameterization(SiB2)for Atmospheric GCMs.Part I:Model Formulation
[J].Journal of Climate,1996,9(4):676-705.

[3] 宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题
[J].遥感学报,2006,10(1):1-5.

[4] 冯晓明.多角度MISR数据用于区域生态环境定量遥感研究
[D]. 北京:中国科学院研究生院遥感应用研究所,2006:33-42.

[5] 宋小宁.基于植被蒸散法的区域缺水遥感监测方法研究
[D].北京:中国科学院研究生院遥感应用研究所,2004:40-42.

[6] Mannheim S,Segl K,Heim B,et al.Monitoring of Lake Water Quality Using Hyperspectral CHRIS-PROBA Data
[C]//Proc of the 2nd CHRIS/Proba Workshop,ESA/ESRIN Frascati,2004:ESA SP-578.

[7] Barducci A,Guzzi D,Marcoionnip P.CHRIS-PROBA Performance Evaluation:Sigal-to-Noise Ratio,Instrument Efficiency and Data Quality form Acquisitions Over San Rossore Italy Test Site
[C].Proc of the 3rd ESA CHRIS/PROBA Workshop Frascati,2005:21-23.

[8] 董广香,张继贤,刘正军.CHRIS/PROBA数据条带噪声去除方法比较
[J].遥感信息,2006(6):36-39.

[9] Miltion T.The Contribution of CHRIS/PROBA to NCAVEO,A Knowledge Transfer Network for the Calibration and Validation of EO Data
[C]//Proc of the 4th ESA CHRIS/PROBA Workshop Frascati,2006:19-21.

[10] Thuillier G,Hersé M,Labs D,et al.The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the ATLAS and EURECA Missions
[J].Solar Physics,2003,214(1):1-22.

[11] Kuusk A.Two-Layer Canopy Reflectance Model ACRM User Guide Version
[R].Tartu Observatory,2009:1-21.

[12] Verhoef W.Light Scattering by Leaf Layers with Application to Canopy reflectance Modeling:the SAIL Model
[J].Remote Sensing of Environment,1984,16(2):125-141.

[13] Goel N S,Strebel D E.Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables.I.Problem Definition and Initial Results Using the Suits Model
[J].Remote Sensing Environment,1983,13(6):487-507.

[14] Kuusk A.The Hot Spot Effect in Plant Canopy Reflectance
[C]//Myneni R B,Ross J,Editors.Photon-vegetation Interactions,Applications in Optical Remote Sensing and Plant Ecology.Berlin:Springer,1991:139-159.

[15] 胡少英,张万昌.黑河及汉江流域MODIS叶面积指数产品质量评价
[J].遥感信息,2005(4):22-27.

[16] 杨飞,孙九林,张柏.基于PROSAIL模型及TM与实测数据的MODISLAI精度评价
[J].农业工程学报,2010,26(4):192-197.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech