Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (4) : 26-30     DOI: 10.6046/gtzyyg.2011.04.05
Technology and Methodology |
Object-oriented Image Segmentation Based on Canny Algorithm
HUANG Liang, ZUO Xiao-qing, FENG Chong, NIE Jun-tang
Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Download: PDF(2246 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Object-oriented image analysis is the current research focus in information extraction,and the image segmentation method is the core technology of the object-oriented method. The effect of the segmentation directly affects the extraction of image objects. In this paper, the authors propose an object-oriented method for image segmentation which combines the advantages of edge detection using Canny operator with the secondary developing functions provided by eCognition Developer 8.0. Tests show that the segmentation method is accurate and reliable,the segmentation result is continuous and can well solve the "flood" and "broken" phenomenon. At the same time,this method that combines the advantages of the object-oriented method can satisfactorily solve the problem of "salt and pepper" and minimizes the impact of noise on the classification so as to extract the interesting object surface features.

Keywords Remote sensing      Coal mine      Surface collapse      ORD boundary extraction     
:  TP 751.1  
  P 237  
Issue Date: 16 December 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Qin-jun
CHEN Yu
LIN Qi-zhong
Cite this article:   
WANG Qin-jun,CHEN Yu,LIN Qi-zhong. Object-oriented Image Segmentation Based on Canny Algorithm[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 26-30.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.04.05     OR     https://www.gtzyyg.com/EN/Y2011/V23/I4/26





[1] 关元秀,程晓阳.高分辨率卫星影像处理指南[M].北京:科学出版社,2008:141-221.







[2] 蒋圣,汪闽,张星月.基于模糊形态学梯度的高分辨率遥感影像分割方法[J].计算机应用研究,2009,26(8):3140-3142.







[3] 高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032.







[4] Baatz M,Sehape A.Multiresolution Segmentation:An Optimization Approach for High Quality Multi-scale Image Segmentation[C]//Strobl J,Blaschke T,Griesebener G,eds.Angewandte Geographische Informations Verarbeitung XII Beiträge zum AGIT-Symposium Salzburg 1999.Karlsruhe Herbert:Wichmann Verlag,2000.







[5] 谭衢霖,刘正军,沈伟.一种面向对象的遥感影像多尺度分割方法[J].北京交通大学学报:自然科学版,2007,31(4):111-119.







[6] Mo D K,Lin H,Li J P,et al.VHR Imagery Multi-Resolution Segmentation Based on Mean Shift[J].Journal of Guangxi Normal University:Natural Science Edition,2006,24(4):247-250.







[7] Canny J.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.







[8] Baatz M,Schape A.Object-oriented and Multi-scale Image Analysis in Semantic Networks[C]//Proc of the 2nd International Symposium on Operationalization of Remote Sensing.Enschede:ITC,August 16th~20th,1999.







[9] 张宏林.精通Visual C++数字图像处理典型算法及实现[M].2版.北京:人民邮电出版社,2008:414-429.







[10] 黄亮,左小清,张晓晓,等.面向对象的道路信息识别提取分析[J].昆明理工大学学报:理工版,2010,35(6):6-10.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech