Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (4) : 108-114     DOI: 10.6046/gtzyyg.2011.04.20
Technology Application |
The Spatial Pattern of Landcover in the Drawdown Area of Danjiangkou Reservoir
LI Wei-ping1,2, ZENG Yuan1, ZHANG Lei1, YIN Kai1, YUAN Chao1, WU Bing-fang1
1. Institute of Remote Sensing Applications,Chinese Academy of Sciences,Beijing 100101,China;
2. China Map Publishing Group, Beijing 100055, China
Download: PDF(2813 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, the location of the submerging area at different water levels (150 m,160 m,170 m and 172 m) in Danjiangkou reservoir basin was detected based on the DEM data,and the landcover below 172 m level was obtained by using object-oriented classification approach based on RapidEye and Landsat-5 TM data. The authors analyzed not only the spatial patterns of the landcover in the drawdown areas but also the impact factors. The results show that the acreage of the drawdown area at 150-160 m,160-170 m and 170-172 m level is 232.0 km2,242.6 km2 and 43.1 km2 respectively. The acreage of the cultivated land is the largest,accounting for about 50% in every drawdown area. In addition,the acreage of the bare land is larger at the low water level,while that of the forest is larger at the high water level. Dynamic scheduling and slope constitute the impact factors on the spatial pattern of landcover. Both have a significant impact on the distribution of landcover in the low elevation region,while the slope has a significant impact on the distribution of landcover in the high elevation region.

Keywords Land surface radiation temperature      Land surface temperature      Infrared channels      Downscaling      FY-2C      MODIS     
:  TP 79  
Issue Date: 16 December 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RONG Yuan
YANG Yong-min
Cite this article:   
RONG Yuan,YANG Yong-min. The Spatial Pattern of Landcover in the Drawdown Area of Danjiangkou Reservoir[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 108-114.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.04.20     OR     https://www.gtzyyg.com/EN/Y2011/V23/I4/108



[1] 张虹,朱平.基于RS与GIS的三峡重庆库区消落区分类系统研究--以重庆开县为例[J].国土资源遥感,2005(3):66-69.



[2] 涂建军,陈治谏,陈国阶,等.三峡库区消落带土地整理利用--以重庆市开县为例[J].山地学报,2002,20(6):712-717.



[3] 苏维词.三峡库区消落带的生态环境问题及其调控[J].长江科学院院报,2004,21(2):32-34,41.



[4] 熊中福.三峡工程蓄水对库区水质的影响[D].重庆:西南大学,2007.



[5] 许川,舒为群,曹佳,等.三峡库区消落带富营养化及其危害预测和防治[J].长江流域资源与环境,2005,14(4):440-444.



[6] 黄朝禧.鄂域水库消落区土地资源的健康开发与利用模式研究[D].武汉:华中农业大学,2006.



[7] Field C K,Siwer P A,Lott A M.Estimating the Effects of Changing Land Use Patterns on Connecticut Lakes[J].Journal of Environmental Quality,1996,25(2):325-333.



[8] Tufford D L.Stream Nonpoint Source Nutrient Prediction with Land-use Proximity and Seasonality[J].Journal of Environmental Quality,1998,27:100-111.



[9] 沈泽昊,张全发,岳超,等.南水北调中线水源区土地利用/土地覆被的空间格局[J].地理学报,2006,61(6):633-644.



[10] 全国水雨情信息网,http://xxfb.hydroinfo.gov.cn/.



[11] Metzler V,Aach T,Thies C.Object-oriented Image Analysis by Evaluating the Causal Object Hierarchy of a Partitioned Reconstructive Scale-space[C].CSIRO,2002.



[12] 周春艳,王萍,张振勇,等.基于面向对象信息提取技术的城市用地分类[J].遥感技术与应用,2008,23(1):31-35.



[13] 黄慧萍.面向对象影像分析中的尺度问题研究[D].北京:中国科学院遥感应用研究所,2003.



[14] 田新光.面向对象高分辨率遥感影像信息提取[D].北京:中国测绘科学研究院,2007.

[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[4] FAN Tianyi, ZHANG Xiang, HUANG Bing, QIAN Zhan, JIANG Heng. Downscaling of TRMM precipitation products and its application in Xiangjiang River basin[J]. Remote Sensing for Natural Resources, 2021, 33(4): 209-218.
[5] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[6] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[7] ZHU Yuxin, WU Menxin, BAO Yansong, LI Xinchuan, ZHANG Jinzong. LST reversion and downscaling based on FY-3D/MWRI L1B brightness temperature data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 27-35.
[8] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[9] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[10] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[11] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[12] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[13] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[14] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[15] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech