Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 70-76     DOI: 10.6046/gtzyyg.2012.01.13
Technology Application |
Remote Sensing Monitoring and Analysis of Fractional Vegetation Cover in the Water Source Area of the Middle Route of Projects to Divert Water from the South to the North
ZHOU Zhi-qiang1,2, ZENG Yuan1, ZHANG Lei1, DU Xin1, WU Bing-fang1
1. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China;
2. Southwest Forestry University, Kunming 650224, China
Download: PDF(4171 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The middle route of the projects to divert water from the south to the north is a part of the large-scale inter-basin water transfer projects in China. It is important to carry out the study and analysis of changes of regional fractional vegetation cover for the protection of ecological environment and water quality. In this paper, based on the data of the remote sensing images obtained in 2000 and 2009, the authors estimated fractional vegetation cover of the water source area by using the method of dimidiate pixel model from normalized difference vegetation index (NDVI), and analyzed the temporal and spatial variation characteristics of the fractional vegetation cover. The main conclusions are as follows: The average fractional vegetation cover in the water source area was 67.5% in 2000, and reached 72% in 2009, with the average fractional vegetation cover being increased in the whole area. The spatial characteristics of increased fractional vegetation cover show that the increase in central region is relatively higher than that in the eastern and western regions; in different kinds of vegetation types, the deciduous conifer forest shows the largest average increase of the fractional vegetation cover, while the grassland shows the smallest increase; fractional vegetation cover has increased in different degrees in most towns of the water source area in the past 10 years, with the increase in Zhashui County being most apparent. This is attributed to the Chinese Government’s policies such as quitting cultivation and returning to forest, closing hillside to facilitate afforestation and farmland construction.
Keywords remote sensing      land surface evapotranspiration(ET)      energy balance      ET model     
:  TP 79  
  X 835  
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Wan-tong
ZHAO Qing-liang
DU Jia
Cite this article:   
WANG Wan-tong,ZHAO Qing-liang,DU Jia. Remote Sensing Monitoring and Analysis of Fractional Vegetation Cover in the Water Source Area of the Middle Route of Projects to Divert Water from the South to the North[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 70-76.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.13     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/70
[1] Purevdorj T S,Tateishi R,Ishiyama T,et al.Relationships Between Percent Vegetation Cover and Vegetation Indices[J].International Journal of Remote Sensing,1998,19(18):3519-3535.
[2] Gitelson A A,Kaufman Y J,Stark R,et al.Novel Algorithms for Remote Estimation of Vegetation Fraction[J].Remote Sensing of Environment,2002,80(1):76-87.
[3] 周国林,袁正科.常用林业技术术语[M].长沙:湖南科学技术出版社,1982.
[4] 章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析[J].北京师范大学学报:自然科学版,2001,37(3):402-408.
[5] 陈云浩,李晓兵,史培军,等.北京海淀区植被覆盖的遥感动态研究[J].植物生态学报,2001,25(5):588-593.
[6] 张云霞,李晓兵,陈云浩.草地植被盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):85-93.
[7] 吴素业.一年生植被覆盖度的简化测试方法[J].水土保持科技情报,1999(1):45-47.
[8] 唐世浩,朱启疆,周宇宇,等.一种简单的估算植被覆盖度和恢复背景信息的方法[J].中国图象图形学报,2003,8(11):1304-1308.
[9] 李苗苗,吴炳方,颜长珍,等.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):153-159.
[10] 程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008(1):13-18.
[11] 李攀,胡德勇,赵文吉.北方农牧交错带植被覆盖变化遥感监测研究——以河北省沽源县为例[J].国土资源遥感,2010(2):113-117.
[12] Qi J,Marsett R C,Moran M S,et al.Spatial and Temporal Dynamics of Vegetation in the San Pedro River Basin Area[J].Agricultural and Forest Meteorology,2000,105(1-3):55-68.
[13] 李善同,许新宜.南水北调与中国发展[M].北京:经济科学出版社,2004.
[14] 李思悦,张全发.南水北调中线丹江口库区主要生态环境问题及植被恢复[J].中国农村水利水电,2008(3):1-4.
[15] 朱桂香.南水北调中线河南水源区的水土流失与治理对策[J].中国水土保持,2005(8):30-31.
[16] 金蓉玲,郭海晋.南水北调中线水源区水资源评价及丹江口入库水量分析[J].人民长江,1993,24(11):7-12.
[17] 沈大军,刘昌明.南水北调中线工程不同调水规模对汉江中下游影响分析[J].地理学报,1998,53(4):341-348.
[18] 沈泽昊,张全发,岳超,等.南水北调中线水源区土地利用/土地覆被的空间格局[J].地理学报,2006,61(6):633-644.
[19] 李石华,角媛梅.环境与灾害监测预报小卫星A星CCD影像质量评价[J].红外技术,2009,31(9):167-172.
[20] 林辉,刘泰龙,李际平.遥感技术基础教程[M].长沙:中南大学出版社,2002.
[21] Leprieur C,Verstraete M M,Pinty B.Evaluation of the Performance of Various Vegetation Indices to Retrieve Vegetation Cover from AVHRR Data[J].Remote Sensing Review,1994,10(4):265-284.
[22] 陈晋,陈云浩,何春阳,等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422.
[23] Zribi M,Le H S,Taconet O,et al.Derivation of Wild Vegetation Cover Density in Semi-arid Regions:ERS2/SAR Evaluation[J].International Journal of Remote Sensing,2003,24(6):1335-1352.
[24] 吴云,曾源,吴炳方,等.基于MODIS数据的三北防护林工程区植被覆盖度提取与分析[J].生态学杂志,2009,28(9):1712-1718.
[25] 吴云,曾源,赵炎,等.基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7):1417-1424.
[26] 郭芬芬,范建容,严冬,等.基于像元二分模型的昌都县植被盖度遥感估算[J].中国水土保持,2010(5):65-67.
[27] Carlson T N,Ripley D A.On the Relation Between NDVI,Fractional Vegetation Cover,and Leaf Area Index[J].Remote Sensing of Environment,1997,62(3):241-252.
[28] 王宏,李晓兵,莺歌,等.基于NOAA NDVI的植被生长季模拟方法研究[J].地理科学进展,2006,25(6):21-32.
[29] 陕西柞水县巩固退耕还林成果项目对我省的启示[EB/OL].2010-07-07.http://plan.hainan.gov.cn/pwnview.php?id=1250.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech