Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 143-149     DOI: 10.6046/gtzyyg.2012.01.25
"The Results of Remote Sensing Application of National Mineral Resource Potential Assessment" Column |
Metallogenic Prognosis Significance of Circular Structures in Porphyry Copper Deposits: A Case Study of Yulong-Malasongduo Area
ZHANG Ting-bin1,2, BIE Xiao-juan2, WU Hua3, HU Zi-hao2, LI Jian-li2, YANG Xue2
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
3. Tibet Institute of Geological Survey, Lhasa 850000, China
Download: PDF(2388 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Porphyry is an important basis for delineating the smallest prospecting area in resource potential evaluation of the porphyry copper deposit. Studies show that many remote sensing circular structures have a relationship with the magmatic activity (including porphyry). In order to evaluate ore potential of the porphyry copper deposit rapidly, the authors made ore prognosis in the Yulong-Malasongduo porphyry copper ore district by using remote sensing technique. Firstly, on the basis of ETM+ images, the circular structure indicators were established. Then, the circular structures in the study area were interpreted, the distribution characteristics of circular structures were summarized,and the deductive indicators of porphyry from circular structures were determined. The results show that circular structures can offer an important clue to delineating the smallest prospecting area of the porphyry copper deposit.
Keywords Qaidam Basin      remote sensing      inherited structure      raised terrain     
:  TP 79  
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Xiao-ping
ZHANG You-yan
MA Da-de
WANG Shi-hong
YU Shi-yong
LI Zhao-zhou
Cite this article:   
QI Xiao-ping,ZHANG You-yan,MA Da-de, et al. Metallogenic Prognosis Significance of Circular Structures in Porphyry Copper Deposits: A Case Study of Yulong-Malasongduo Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 143-149.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.25     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/143
[1] 刘登忠.环形构造成矿标志[J].成都地质学院学报:自然科学版,1988,15(2):34-57.
[2] 秦小光,赵不亿,李甫安.环形构造成矿预测定量分析——以桂西北地区金矿预测为例[J].国土资源遥感,1993(2):54-60.
[3] 何国金,薛重生.遥感地质学中若干问题的分形探讨[J].国土资源遥感,1993(3):46-53.
[4] 周正武,张建枢,王卫东.大型斑岩铜矿的遥感信息探讨[J].国土资源遥感,1996(2):10-20.
[5] 李廷祺."岩浆期后矿床"的成矿原理与环形构造成矿[J].国土资源遥感,1998(4):54-58.
[6] 欧阳成甫.云南澜沧老厂银铅矿床环形构造研究及其地质效果[J].国土资源遥感,1994(1):23-28.
[7] 王瑞雪,高建国,杨世瑜.澜沧老厂矿床线-环结构模式拟建及成矿预测[J].国土资源遥感,2007(3)51-55.
[8] 王品清,刘刚,李邦良.陆地卫星TM及JERS-1卫星SAR数据用于西藏东部斑岩铜矿勘查[J].国土资源遥感,1997(2):52-60.
[9] 楼性满.在铜官山老矿区内进一步找矿的几点意见[J].国土资源遥感,1993(3):56-58.
[10] 成永生,陈松龄.基于遥感解译的环形构造研究及其找矿意义[J].矿业研究与开发,2007,27(3):53-55.
[11] 刘德长,叶发旺,张杰林.泊江海子油气环状构造的发现及其对铀成矿的重要作用[J].国土资源遥感,2007(1):69-71.
[12] Hou Z Q,Ma H W,Khin Z,et al.The Himalayan Yulong Porphyry Copper Belt:Product of Largescale Strike-slip Faulting in Eastern Tibet[J].Economic Geology,2003,98(1):125-145.
[13] 芮宗瑶,黄崇轲,齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984:1-300.
[14] 马鸿文.论藏东玉龙斑岩铜矿带岩浆侵入时代[J].地球化学,1989(3):210-216.
[15] 梁华英,莫济海,孙卫东,等.藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析[J].岩石学报,2008,24(10):2352-2358.
[16] 唐仁鲤,罗怀松.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社,1995:1-310.
[17] 芮宗瑶,张洪涛,陈仁义,等.斑岩铜矿研究中若干问题探讨[J].矿床地质,2006,25(4):491-500.
[18] 西藏地质局第一地质大队.西藏东部玉龙斑岩铜矿床和矿带的成矿规律与找矿方向[J].西藏地质,1987,1:25-57.
[19] 张玉泉,谢应雯,梁华英,等.藏东玉龙铜矿带含矿斑岩及成岩系列[J].地球化学,1998,27(3):236-243.
[20] 马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].北京:中国地质大学出版社,1990:15.
[21] 楼性满,葛榜军.遥感找矿预测方法[M].北京:地质出版社,1994,53-54.
[22] 张廷斌,别小娟,吴华,等.藏东地区遥感蚀变异常提取与分析[J].西藏地质,2010,(28,29):120-124.
[23] 张廷斌,唐菊兴,黄丁发.矿化蚀变信息提取的TM/ETM+遥感影像模式[J].遥感信息,2009(2):47-51.
[24] 张廷斌,钟康惠,易桂花,等.东昆仑五龙沟金矿集中区遥感地质信息提取与找矿预测[J].地质与勘探,2009,45(4):444-449.
[25] 张玉君,杨建民,姚佛军.多光谱遥感技术预测矿产资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J].地学前缘,2007,14(5):63-70.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech