Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (1) : 71-76     DOI: 10.6046/gtzyyg.2013.01.13
Technology and Methodology |
HJ-1A satellite remote sensing data classification based on KPCA and FCM
BAI Yang1,2, ZHAO Yindi1,2
1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
2. Key Laboratory for Land Environment and Disaster Monitoring of SBSM, Xuzhou 221116, China
Download: PDF(3768 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to improve the remote sensing data classification accuracy of the environment and disaster monitoring and forecasting small satellite constellation 1A (HJ-1A) Star, the authors first fused hyperspectral imager data and CCD multispectral imagery by the Gram-Schmidt fusion algorithm, and then applied dimensionality reduction to the fused hyperspectral image by using principal component analysis (PCA) and kernel principal component analysis (KPCA). Gaussian, linear and polynomial kernel functions were employed during KPCA dimensionality reduction, and the polynomial kernel function was selected with its highest accumulative contribution rate according to the evaluation results of feature extraction. Finally, the fused hyperspectral image, the PCA image and the KPCA image with the polynomial kernel function were classified using the fuzzy C-means algorithm (FCM), respectively. The experimental results show that, for the fused hyperspectral image, the feature extraction based on KPCA can increase computational efficiency and improve the classification accuracy.

Keywords MODIS      chlorophyll-a concentration      Hebei sea area     
:  TP751.1  
Issue Date: 21 February 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Wen-jia
YANG Bin
TIAN Li
GE Chao-ying
XU Yong-li
Cite this article:   
XU Wen-jia,YANG Bin,TIAN Li, et al. HJ-1A satellite remote sensing data classification based on KPCA and FCM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 71-76.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.01.13     OR     https://www.gtzyyg.com/EN/Y2013/V25/I1/71
[1] Garcia V,Sanchez J S,Mollineda R A.Classification of high dimensional and imbalanced hyperspectral imagery data[C]//Lecture Notes in Computer Science.New York:Springer,2011:644-651.
[2] 刘小芳,何彬彬,李小文.基于半监督核模糊c-均值算法的北京一号小卫星多光谱图像分类[J].测绘学报,2011,40(3):301-306. Liu X F,He B B,Li X W.Classification for Beijing-1 micro-satellite's multispectral image based on semi-supervised kernel FCM algorithm[J].Acta Geodaetica et Cartographica Sinica,2011,40(3):301-306.
[3] 杨国鹏,余旭初,刘伟,等.面向高光谱遥感影像的分类方法研究[J].测绘通报,2007(10):17-20. Yang G P,Yu X C,Liu W,et al.Research on hyperspectral remote sensing image classification methods[J].Bulletin of Surveying and Mapping,2007(10):17-20.
[4] 杜卓明,屠宏,耿国华.KPCA方法过程研究与应用[J].计算机工程与应用,2010,46(7):8-10. Du Z M,Tu H,Geng G H.KPCA method research and application process[J].Computer Engineering and Applications,2010,46(7):8-10.
[5] 韩萍,吴仁彪,王兆华,等.基于KPCA准则的SAR目标特征提取与识别[J].电子与信息学报,2003,25(10):1297-1301. Han P,Wu R B,Wang Z H,et al.SAR automatic target recognition based on KPCA criterion[J].Journal of Electronics and Information Technology,2003,25(10):1297-1301.
[6] 蔡静颖,张永,张凤梅,等.优化KPCA特征提取下的FCM算法研究[J].计算机工程与应用,2009,45(32):38-40. Cai J Y,Zhang Y,Zhang F M,et al.Fuzzy c-mean algorithm based on optimized KPCA feature extraction[J].Computer Engineering and Applications,2009,45(32):38-40.
[7] 高恒振,万建伟,粘永健,等.组合核函数支持向量机高光谱图像融合分类[J].光学精密工程,2011,4(4):878-883. Gao H Z,Wan J W,Nian Y J,et al.Fusion classification of hyperspectral image by composite kernels support vector machine[J].Optics and Precision Engineering,2011,4(4):878-883.
[8] 田慧,周绍光.利用改进的FCM方法分割高分辨率遥感影像[J].测绘通报,2011(12):44-57. Tian H,Zhou S G.Segmentation of high resolution image using improved FCM method[J].Bulletin of Surveying and Mapping,2011(12):44-57.
[9] 钮立明,蒙继华,吴炳方,等.HJ-1A星HSI数据2级产品处理流程研究[J].国土资源遥感,2011,23(1):77-82. Niu L M,Meng J H,Wu B F,et al.Research on standard preprocessing flow for HJ-1A HIS level 2 data product[J].Remote Sensing for Land and Resources,2011,23(1):77-82.
[10] Ambarish J.Non-linear dimension reduction using kernel PCA[EB/OL].[2010-04-20].http://www.athworks.com/matlabcentral/fileexchange/27319-kernel-pca.
[11] Congalyon R G.A review of assessing the accuracys of classification of remotely sensed data [J].Remote Sensing of Environment,1991,37(1):35-46.
[12] 王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报:自然科学版,2006,5(4):500-504. Wang H Z,YU J S.Study on the kernel-based methods and its model selection[J].Natural Science Edition of Southern Yangtze University,2006,5(4):500-504.
[1] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[2] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[3] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[4] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[5] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[6] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[7] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[8] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[9] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[10] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[11] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
[12] Linlin WU, Yunlan GUAN, Jiawei LI, Chenxin YUAN, Rui LI. Assessment of Karst rocky desertification based on MODIS: Exemplified by Guizhou Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 235-242.
[13] Kailin LI, Chungui ZHANG, Kuo LIAO, Lichun LI, Hong WANG. Study of remote sensing atmosphere index of Fujian Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 151-158.
[14] Jiaping WU, Yang ZHANG, Jie ZHANG, Shenglong FAN, Chao YANG, Xiaofang ZHANG. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast[J]. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
[15] Ying LIU, Hui YUE, Enke HOU. Drought monitoring based on MODIS in Shaanxi[J]. Remote Sensing for Land & Resources, 2019, 31(2): 172-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech