Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (1) : 105-110     DOI: 10.6046/gtzyyg.2013.01.19
Technology Application |
Application of TerraSpec spectrometer to the study of alteration information in the Duobuza porphyry copper deposit of Tibet
DAI Jingjing1,2, WANG Ruijiang2, QU Xiaoming2, XIN Hongbo2
1. Faculty of Earth Sciences, China University of Geosciences(Beijing), Beijing 100083, China;
2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources Chinese Academy of Geological Sciences, Beijing 100037, China
Download: PDF(3117 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Duobuza deposit in Gaize of Tibet is one of the large-size porphyry copper deposits in Bangong Lake-Nujiang River mineralization zone found in recent years. The study of this typical deposit can provide good understanding for mineral deposit prognosis of this mineralization zone. In this paper, the spectra of samples in the Duobuza deposit were measured by using USA TerraSpec spectrometer, and at the same time, the microscopic identification of the samples was conducted. The results show that the main alterations in this deposit are phyllic alteration and epidotization, and the main mineralizations on the surface include limonite, malachite and azurite. The spectra of two kinds of granodiorite-porphyry are different. The spectrum of granodiorite-porphyry related to mineralization shows distinct phyllic alteration, and the spectrum of granodiorite-porphyry which is not related to mineralization shows little or non alteration, distributed around the first kind of granodiorite-porphyry. The spectra of the samples measured by using TerraSpec are consistent with the spectra of ASTER image. Finally, the phyllic alteration area which has close relationship with the mineralization was delineated based on the spectral analysis, and these areas are considered to be more important prospecting areas in the future.

Keywords MODIS      AIRS      pixed cloud      space maching      cloud classification      cloud phase     
:  TP79  
Issue Date: 21 February 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Danfeng
ZHANG Jilong
WANG Zhibin
CHEN Yuanyuan
CHEN Youhua
Cite this article:   
WANG Danfeng,ZHANG Jilong,WANG Zhibin, et al. Application of TerraSpec spectrometer to the study of alteration information in the Duobuza porphyry copper deposit of Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 105-110.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.01.19     OR     https://www.gtzyyg.com/EN/Y2013/V25/I1/105
[1] 连长云,章革,元春华.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J].矿床地质,2005,24(6):621-636. Lian C Y,Zhang G,Yuan C H.Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district,Yunnan province[J].Mineral Deposits,2005,24(6):621-636.
[2] 章革,连长云,元春华.PIMA在云南普朗斑岩铜矿矿物识别中的应用[J].地学前缘,2004,11(4):460. Zhang G,Lian C Y,Yuan C H.Application of PIMA to Pulang porphyry copper ore district,Yunnan province[J].Earth Science Frontiers,2004,11(4):460.
[3] 章革,连长云,王润生.便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J].地质通报,2005,24(5):480-484. Zhang G,Lian C Y,Wang R S.Application of the portable infrared mineral analyser(PIMA)in mineral mapping in Qulong copper prospect,Mozhugongka county,Tibet[J].Geological Bulletin of China,2005,24(5):480-484.
[4] 连长云,章革,元春华.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J].中国地质,2005,32(3):483-493. Lian C Y,Zhang G,Yuan C H.Application of SWIR reflectance spectroscopy in mapping of hydrothermal alteration minerals:A case study of the Tuwu porphyry copper prospect,Xinjiang[J].Geology in China,2005,32(3):483-493.
[5] 张篷,武振凯.PIMA在斑岩型矿床蚀变带划分中的应用综述[J].吉林地质,2011,30(1):129-132. Zhang P,Wu Z K.Application of PIMA in alteration zone division of the porphyry deposit[J].Jilin Geology,2011,30(1):129-132.
[6] 张篷,许虹,孙雨沁.PIMA在金矿床热液蚀变矿物分带中的应用[J].中国矿业,2011(4):155-158. Zhang P,Xu H,Sun Y Q.The application of PIMA on hydrothermal alteration mineral zoning,gold deposit[J].China Mining Magazine,2011(4):155-158.
[7] 徐庆生,郭健,刘阳,等.近红外光谱矿物分析技术在帕南铜-钼-钨矿区蚀变矿物填图中的应用[J].地质与勘探,2011,47(1):107-112. Xu Q S,Guo J,Liu Y,et al.Application of short wave infrared spectrum mineral analyzer(BJKF-1)to alteration mineral mapping at Panan,Tibet[J].Geology and Exploration,2011,47(1):107-112.
[8] 曹烨,李胜荣,申俊峰,等.便携式短波红外光谱矿物测量仪(PIMA)在河南前河金矿热液蚀变研究中的应用[J].地质与勘探,2008,44(2):82-86. Cao Y,Li S R,Shen J F,et al.Application of portable infrared mineral analyzer(PIMA)in the Qianhe gold mine,Henan province[J].Geology and Prospecting,2008,44(2):82-86.
[9] 朱炳玉,马华东,Hewson R.便携式短波红外矿物分析仪(PIMA)在新疆金山金矿勘探中的实验研究[J].新疆有色金属,2010,33(S2):9-11. Zhu B Y,Ma H D,Hewson R.Application of portable infrared mineral analyzer(PIMA)in the Jinshan gold deposit,Xinjiang[J].Xinjiang Nonferrous Metals,2010,33(S2): 9-11.
[10] 赵利青,邓军,原海涛,等.台上金矿床蚀变带短波红外光谱研究[J].地质与勘探,2008,44(5):58-63. Zhao L Q,Deng J,Yuan H T,et al.Short wavelength infrared spectral analysis of alteration zone in the Taishang gold deposit[J].Geology and Prospecting,2008,44(5):58-63.
[11] Sun Y Y,Philip K S,Yang K.Application of short-wave infrared spectroscopy to define alteration zones assocoated with the Elura Zinc-lead-silver deposit,NSW,Australia[J].Journal of Geochemical Exploration,2001,73(1):11-26.
[12] Yang K,Browneb P R L,Huntington J F,et al.Characterising the hydrothermal alteration of the Broadlands-Ohaaki geothermal system,New Zealand,using short-wave infrared spectroscopy[J].Journal of Volcanology and Geothermal Research,2001,106(1-2):53-65.
[13] Yang K,Huntington J F,Gemmell J B,et al.Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer,Tasmania,as revealed by infrared reflectance spectroscopy[J].Journal of Geochemical Exploration,2011,108(2):143-156.
[14] 王艳丽,许虹,韩剑.PIMA在地质中的应用研究[J].地质找矿论丛,2009,24(1):77-82. Wang Y L,Xu H,Han J.Study on application of PIMA to geology[J].Contribution to Geology and Mineral Resources Research,2009,24(1):77-82.
[15] Biel C,Subías I,Acevedo R D,et al.Mineralogical,IR-spectral and geochemical monitoring of hydrothermal alteration in a deformed and metamorphosed Jurassic VMS deposit at Arroyo Rojo,Tierra delFuego,Argentina[J].Journal of South American Earth Sciences,2012,35:62-73.
[16] Yitagesu F A,Meer F,Werff H,et al.Spectral characteristics of clay minerals in the 2.5-14 μm wavelength region[J].Applied Clay Science,2011,53(4):581-591.
[17] Madani A A.Spectral properties of carbonatized ultramafic mantle xenoliths and their host olivine basalts,Jabal Al Maqtal basin,south eastern desert,Egypt,Using ASD FieldSpec spectroradiometer[J].The Egyptian Journal of Remote Sensing and Space Sciences,2011,14(1):41-48.
[18] 李光明,李金祥,秦克章,等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报,2007,23(5):935-951. Li G M,Li J X,Qin K Z,et al.High temperature,salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt,Tibet:Evidence from fluid inclusions[J].Acta Petrologica Sinica,2007,23(5):935-951.
[19] 李金祥,李光明,秦克章,等.班公湖带多不杂富金斑岩铜矿床斑岩—火山岩的地球化学特征与时代对成矿构造背景的制约[J].岩石学报,2008,24(3):531-542. Li J X,Li G M,Qin K Z,et al.Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt,Tibet:Constraints on metaliogenic tectonic settings[J].Acta Petrologica Sinica,2008,24(3):531-542.
[20] 佘宏全,李进文,丰成友,等.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义[J].地质学报,2006,80(9):1434-1446. She H Q,Li J W,Feng C Y,et al.The high-temperature and hypersaline fluid inclusions and its implications to the metallogenesis in Duobuza porphyry copper deposit,Tibet[J].Acta Geologica Sinica,2006,80(9):1434-1446.
[21] 祝向平,陈华安,马东方,等.西藏多不杂斑岩铜金矿床地质与蚀变[J].地质与勘探,2012,48(2):199-206. Zhu X P,Chen H A,Ma D F,et al.Geology and alteration of the Duobuza porphyry copper-gold deposit in Tibet[J].Geology and Exploration,2012,48(2):199-206.
[22] 代晶晶,曲晓明,辛洪波.基于ASTER遥感数据的西藏多龙矿集区示矿信息的提取[J].地质通报,2010,29(5):752-759. Dai J J,Qu X M,Xin H B.The extraction of alteration mineral information using ASTER remote sensing data in Duolong area of Tibet[J].Geological Bulletin of China,2010,29(5):752-759.
[23] 胡紫豪,唐菊兴,张廷斌,等.西藏多不杂斑岩铜矿ASTER遥感蚀变异常特征[J].国土资源遥感,2012,24(1):150-154. Hu Z H,Tang J X,Zhang T B,et al.Characteristics of remote sensing alteration anomalies from ASTER in the Duobuza prophyry copper deposit[J].Remote Sensing for Land and Resources,2012,24(1):150-154.
[24] 西藏地质调查院.1:5万西藏自治区改则县多龙地区地质调查报告[R].拉萨:西藏地质调查院,2008. Institute of Geology Survey in Tibet.Reports on regional geological surveys at 1:50000 scale in Duolong area,Gaize country of Tibet[R].Lasa:Institute of Geology Survey in Tibet,2008.
[1] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[4] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[5] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[6] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[7] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[8] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[9] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[10] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[11] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[12] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[13] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
[14] Kailin LI, Chungui ZHANG, Kuo LIAO, Lichun LI, Hong WANG. Study of remote sensing atmosphere index of Fujian Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 151-158.
[15] Linlin WU, Yunlan GUAN, Jiawei LI, Chenxin YUAN, Rui LI. Assessment of Karst rocky desertification based on MODIS: Exemplified by Guizhou Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech