Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (4) : 71-77     DOI: 10.6046/gtzyyg.2014.04.12
Technology and Methodology |
Comparative study of image fusion algorithms for SPOT6
GUO Lei1, YANG Jihong2, SHI Liangshu2, ZHAN Ying2, ZHAO Dongling1, ZHANG Chao1, SUN Jiabo1, JI Jiajia1
1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
2. China Land Surveying and Planning Institute, Ministry of Land and Resources, Beijing 100035, China
Download: PDF(1080 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

SPOT6 is a new remote sensing satellite launched in 2012,with the characteristics of high spatial resolution and strong acquisition capability. However, a complete data preprocessing technology for the regulation of land resources has not yet been formed. According to the characteristics of SPOT6 satellite images, four different image fusion methods of Gram-Schmidt, HPF, Pansharp and PanSharpening were selected to conduct the experiment of comparison by using the software platforms of ENVI, ERDAS and PCI. For evaluating the results' performances, the authors compared them in three aspects. The image quality of experiment results was evaluated qualitatively and also assessed quantitatively by establishing evaluation indexes including mean,standard deviation,information entropy,average gradient and correlation coefficient. The application result of fused images was evaluated based on the evaluation of the classification accuracy. The analytical results show that these algorithms would work in different ways and could be used in different applications. The results achieved by the authors can provide the technical support for application of SPOT6 image to the land resources management.

Keywords remote sensing      GIS      land use/cover change (LUCC)      transfer matrix      Markov forecast     
:  TP751.1  
Issue Date: 17 September 2014
E-mail this article
E-mail Alert
Articles by authors
LIU Meng
YANG Wunian
SHAO Huaiyong
SUN Xiaofei
Cite this article:   
LIU Meng,YANG Wunian,SHAO Huaiyong, et al. Comparative study of image fusion algorithms for SPOT6[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 71-77.
URL:     OR

[1] 周前祥,敬忠良,姜世忠.多源遥感影像信息融合研究现状与展望[J].宇航学报,2002,23(5):89-94. Zhou Q X,Jing Z L,Jiang S Z.Comments on research and development of multi-source information fusion for remote sensing images[J].Journal of Astronautics,2002,23(5):89-94.

[2] 孔庆楠.多源遥感影像数据的融合方法探讨[J].测绘与空间地理信息,2008,3(4):108-113. Kong Q N.Discussion on the methods for multi-source remote sensing image fusion[J].Geomatics and Spatial Information Technology,2008,3(4):108-113.

[3] 姚静,武文波,康停军.多源遥感影像数据融合技术探讨[J].测绘与空间地理信息,2008,31(1):29-31. Yao J,Wu W B,Kang T J.Discussion on the technology of multi-source remote sensing image data fusion[J].Geomatics and Spatial Information Technology,2008,31(1):29-31.

[4] 张庆河,邹峥嵘,余加勇.遥感影像像素级融合方法比较研究[J].测绘工程,2008,17(4):35-42. Zhang Q H,Zou Z R,Yu J Y.Research on the fixel fusion method of remote sensing image[J].Engineering of Surveying and Mapping,2008,17(4):35-42.

[5] Pohl C,Van Genderen J L.Multisensor image fusion in remote sensing:Concept,methods and applications[J].International Journal of Remote Sensing,1988,19(5):823-854.

[6] 许民.高分辨率遥感影像融合方法研究及融合效果评价——以ALOS和SPOT的全色与多光谱影像为例[D].兰州:兰州大学,2010. Xu M.Research on high resolution remotely sensed image fusion methods and evaluation of fusion quality:A case study of multi-spectral and panchromatic data of ALOS and SPOT[D].Lanzhou:Lanzhou University,2010.

[7] Clayton D G.Gram-Schmidt orthogonalization[J].Applied Statistics,1971,20(3):335-338.

[8] 初禹,单久库,侯建国.GeoEye-1遥感影像融合效果的比较分析[J].测绘与空间地理信息,2011,34(3):21-26. Chu Y,Shan J K,Hou J G.Comparison and analysis of the fusion results of GeoEye-1 remote sensing imagery[J].Geomatics and Spatial Information Technology,2011,34(3):21-26.

[9] 姜红艳,邢立新,梁立恒,等.PanSharpening自动融合算法及应用研究[J].测绘与空间地理信息,2008,31(5):72-78. Jiang H Y,Xing L X,Liang L H,et al.Study on Pansharpening auto-fusion arithmetic and application[J].Geomatics and Spatial Information Technology,2008,31(5):72-78.

[10] 李存军,刘良云,王纪华,等.两种高保真遥感影像融合方法比较[J].中国图象图形学报,2004,9(11):1376-1385. Li C J,Liu L Y,Wang J H,et al.Comparison of two methods of fusing remote sensing images with fidelity of spectral information[J].Journal of Image and Graphics,2004,9(11):1376-1385.

[11] 何海鹏,何国金.IKONOS高分辨率遥感影像融合方法比较研究[J].科技导报,2009,27(5):33-37. He H P,He G J.Comparison of image fusion algorithms for IKONOS high spatial resolution satellite image[J].Science and Technology Review,2009,27(5):33-37.

[12] 樊旭艳,付春龙,韩鹏,等.QuickBird高分辨率影像融合方法比较研究[J].无线电工程,2011,41(6):19-21. Fan X Y,Fu C L,Han P,et al.Comparison of image fusion algorithms for QuickBird high spatial resolution satellite image[J].Radio Engineering,2011,41(6):19-21.

[13] 谭永生,沈掌泉,贾春燕,等.QuickBird全色与多光谱影像融合方法比较研究[J].科技通报,2008,24(4):498-503. Tan Y S,Shen Z Q,Jia C Y,et al.Study on fusion algorithms of QuickBird PAN and multi spectral images[J].Bulletin of Science and Technology,2008,24(4):498-503.

[14] 黄鹤,冯毅,张萌,等.天绘一号卫星影像的融合及评价研究[J].测绘通报,2013(1):6-9. Huang H,Feng Y,Zhang M,et al.Research on fusion of Mapping Satellite-1 imagery and its evaluation[J].Bulletin of Surveying and Mapping,2013(1):6-9.

[15] 陈雪洋,袁超.ZY-1 02C卫星影像融合方法评价[J].测绘与空间地理信息,2013,36(2):50-53. Chen X Y,Yuan C.Data fusion evaluation of ZY-1 02C satellite images[J].Geomatics and Spatial Information Technology,2013,36(2):50-53.

[16] 王建梅,李德仁.QuickBird全色与多光谱数据融合方法用于土地覆盖分类中的比较研究[J].测绘通报,2005(10):37-41. Wang J M,Li D R.A study of fusion algorithms of QuickBird pan and multispectral images for land cover classification[J].Bulletin of Surveying and Mapping,2005(10):37-41.

[17] 翁永玲,田庆久,惠凤鸣.IKONOS高分辨率遥感影像自身融合效果分析[J].东南大学学报:自然科学版,2004,34(2):274-277. Weng Y L,Tian Q J,Hui F M.Research on the fusion effects of IKONOS high-resolution remote sensing image[J].Journal of Southeast University:Natural Science Edition,2004,34(2):274-277.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[8] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[9] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[10] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[11] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[12] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[13] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[14] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[15] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech