Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (1) : 129-135     DOI: 10.6046/gtzyyg.2017.01.20
Technology Application |
Simulation of the total solar radiation over micro-landform and correlation between the solar radiation and the land surface temperature
WEI Shenglong1,2, CHEN Zhibiao1,3, CHEN Zhiqiang1,3, WANG Qiuyun1,2, MA Xiuli1,2, YAN Xinyu1,2
1. College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China;
2. Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fujian Normal University, Fuzhou 350007, China;
3. Institute of geography, Fujian Normal University, Fuzhou 350007, China
Download: PDF(3415 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Solar radiation is the most important energy source in the Earth. The Yangxin's research shows that the effect of DEM scale causes great uncertainty to the simulation of solar radiation, and the impacts of DEM resolution on the simulation of the solar radiation are much greater in hilly area than in the mountainous area. To estimate the solar radiation model (SRAD), the authors measured the micro terrains with the help of real-time kinematic (RTK) and achieved the 0.1 m×0.1 m high-resolution DEM by TGO and ArcGIS10.0 software. Then the authors analyzed the correlation between the solar radiation and the land surface temperature. It is found that the solar radiation is differently distributed on the micro-landform. Groove ridge, sunny and gentle slopes accept more solar radiation than groove bottom, shady and steep slopes. The radiation is in descending order of summer(2 149.96 MJ/m2), spring(1 903.97 MJ/m2), autumn(1 461.86 MJ/m2) and winter(1 093.11 MJ/m2), and solar radiation is reduced gradually with the increase of the grade of slope. The results show that the land surface temperature is significantly correlated to solar radiation (0.622).

Keywords GF-1      extraction of water body information      modified shadow water index(MSWI)      decision tree classification     
:  TP79  
Issue Date: 23 January 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jinjie
DING Jianli
ZHANG Cheng
CHEN Wenqian
Cite this article:   
WANG Jinjie,DING Jianli,ZHANG Cheng, et al. Simulation of the total solar radiation over micro-landform and correlation between the solar radiation and the land surface temperature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 129-135.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.01.20     OR     https://www.gtzyyg.com/EN/Y2017/V29/I1/129

[1] Dozier J,Outcalt S I.An approach toward energy balance simulation over rugged terrain[J].Geographical Analysis,1979,11(1):65-85.
[2] 李新,程国栋,陈贤章,等.任意地形条件下太阳辐射模型的改进[J].科学通报,1999,44(9):993-998. Li X,Cheng G D,Chen X Z,et al.Modification of solar radiation model over rugged terrain[J].Chinese Science Bulletin,1999,44(15):1345-1349.
[3] Dozier J,Frew J.Rapid calculation of terrain parameters for radiation modeling from digital elevation data[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(5):963-969.
[4] 傅抱璞.论坡地上的太阳辐射总量[J].南京大学学报:自然科学版,1958(2):47-82. Fu B P.The solar radiation falling on slope[J].Journal of Nanjing University:Natural Science Edition,1958(2):47-82.
[5] 翁笃鸣.中国辐射气候[M].北京:气象出版社,1997:250-279. Weng D M.China Radiation Climate[M].Beijing:Meteorology Publishing House,1997:250-279.
[6] 李占清,翁笃鸣.丘陵山地总辐射的计算模式[J].气象学报,1988,46(4):461-468. Li Z Q,Weng D M.A numerical approach toward global radiation over rugged areas[J].Acta Meteorologica Sinica,1988,46(4):461-468.
[7] 朱志辉.墙面太阳辐照的理论计算与模式估计——以上海为例[J].地理学报,1987,42(1):28-41. Zhu Z H.Theoretical computation and model estimation of solar irradiation incident on vertical wall surfaces:With an example of Shanghai[J].Acta Geographica Sinica,1987,42(1):28-41.
[8] Ruiz-Arias J A,Tovar-Pescador J,Pozo-Vázquez D,et al.A comparative analysis of DEM-based models to estimate the solar radiation in mountainous terrain[J].International Journal of Geographical Information Science,2009,23(8):1049-1076.
[9] 汤国安,龚健雅,陈正江,等.数字高程模型地形描述精度量化模拟研究[J].测绘学报,2001,30(4):361-365. Tang G A,Gong J Y,Chen Z J,et al.A Simulation on the accuracy of DEM terrain representation[J].Acta Geodaetica et Cartographica Sinica,2001,30(4):361-365.
[10] 杨昕,汤国安,王雷.基于DEM的山地总辐射模型及实现[J].地理与地理信息科学,2004,20(5):41-44. Yang X,Tang G A,Wang L.Modeling of global radiation over rugged areas based on DEM[J].Geography and Geo-Information Science,2004,20(5):41-44.
[11] Bergkamp G.A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands[J].Catena,1998,33(3/4):201-220.
[12] Diefenderfer H L,Coleman A M,Borde A B,et al.Hydraulic geometry and microtopography of tidal freshwater forested wetlands and implications for restoration,Columbia River,USA[J].Ecohydrology & Hydrobiology,2008,8(2/4):339-361.
[13] Wolf K L,Ahn C,Noe G B.Microtopography enhances nitrogen cycling and removal in created mitigation wetlands[J].Ecological Engineering,2011,37(9):1398-1406.
[14] Hammad A H A,Børresen T,Haugen L E.Effects of rain characteristics and terracing on runoff and erosion under the Mediterranean[J].Soil and Tillage Research,2006,87(1):39-47.
[15] Antoine M,Javaux M,Bielders C.What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale?[J].Advances in Water Resources,2009,32(8):1297-1310.
[16] Loos M,Elsenbeer H.Topographic controls on overland flow generation in a forest-an ensemble tree approach[J].Journal of Hydrology,2011,409(1/2):94-103.
[17] H rnberg G,Ohlson M,Zackrisson O.Influence of bryophytes and microrelief conditions on Picea abies seed regeneration patterns in boreal old-growth swamp forests[J].Canadian Journal of Forest Research,1997,27(7):1015-1023.
[18] He H L,Yu G R,Niu D.Method of global solar radiation calculation on complex territories[J].Resources Science,2003,25(1):78-85.
[19] Kumar L,Skidmore A K,Knowles E.Modelling topographic variation in solar radiation in a GIS environment[J].International Journal of Geographical Information Science,1997,11(5):475-497.
[20] Gates D M.Biophysical Ecology[M].New York,NY:Courier Dover Publications,2003:85-86.
[21] 覃志豪,Li W J,Zhang M H,等.单窗算法的大气参数估计方法[J].国土资源遥感,2003(2):37-43.doi:10.6046/gtzyyg.2003.02.10. Qin Z H,Li W J,Zhang M H,et al.Estimating of the essential atmospheric parameters of mono-window algorithm for land surface temperature retrieval from landsat TM6[J].Remote Sensing for Land and Resources,2003(2):37-43.doi:10.6046/gtzyyg.2003.02.10.
[22] Van Dam O.Forest Filled with Gaps:Effects of Gap Size on Water and Nutrient Cycling in Tropical Rain Forest:A Study in Guyana[D].Utrecht:Utrecht University,2001:69-72.
[23] Gates D M.Biophysical Ecology[M].New York:Springer-Verlag,1980:96-146.
[24] 《大气科学辞典》编委会.大气科学辞典[M].北京:气象出版社,1994:117. Editorial Committee of Dictionary of Atmospheric Science.Dictionary of Atmospheric Science[M].Beijing:China Meteorological Press.1994:117.
[25] 杨昕,汤国安,肖晨超.太阳辐射模拟的DEM尺度影响因素分析[J].地球信息科学,2007,9(2):14-19. Yang X,Tang G A,Xiao C C.Effect of DEM resolution on simulation of solar radiation[J].Geo-information Science,2007,9(2):14-19.
[26] 高志强,刘纪远.基于陆面模式和遥感技术的地表温度比较[J].地理学报,2003,58(4):494-502. Gao Z Q,Liu J Y.The comparison of land surface temperature with CLM and split window retrieving method[J].Acta Geographica Sinica,2003,58(4):494-502.
[27] 陈惠,林晶,李丽纯,等.福建省太阳总辐射计算方法及时空分布[J].中国农学通报,2009,25(22):291-295. Chen H,Lin J,Li L C,et al.Calculation of total solar radiation and its distribution characteristics in Fujian Province[J].Chinese Agricultural Science Bulletin,2009,25(22):291-295.
[28] 文明章,张容焱,高建芸,等.基于地形的福建省太阳辐射模拟计算及评估[J].亚热带资源与环境学报,2013,8(3):65-71. Wen M Z,Zhang R Y,Gao J Y,et al.Solar radiation in Fujian Province:Calculation and assessment based on DEM[J].Journal of Subtropical Resources and Environment,2013,8(3):65-71.
[29] Liou K N.An Introduction to Atmospheric Radiation[M].2nd ed.Pittsburgh:Academic Press,2002:68-71.
[30] Vivian-Smith G.Microtopographic heterogeneity and floristic diversity in experimental wetland communities[J].Journal of Ecology,1997,85(1):71-82.
[31] El-Bana M I,Nijs I,Kockelbergh F.Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem[J].Plant and Soil,2002,247(2):283-293.

[1] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[2] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[3] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[4] Zhuhong ZHANG, Baoyun WANG, Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG. River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set[J]. Remote Sensing for Land & Resources, 2020, 32(2): 54-62.
[5] Ning WANG, Jiahua CHENG, Hanye ZHANG, Hongjie CAO, Jun LIU. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 35-42.
[6] Hui YUAN, Qiming QIN, Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
[7] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[8] Xiaotong LI, Xianlin QIN, Shuchao LIU, Guifen SUN, Qian LIU. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 80-86.
[9] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[10] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[11] Yilin JIA, Wen ZHANG, Lingkui MENG. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 95-100.
[12] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[13] Jian LIAO, Xingfa GU, Yulin ZHAN, Yazhou ZHANG, Xinyu REN, Shuaiyi SHI. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
[14] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[15] Lingyu YIN, Xianlin QIN, Guifen SUN, Shuchao LIU, Xiaofeng ZU, Xiaozhong CHEN. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech