Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 114-119     DOI: 10.6046/gtzyyg.2017.04.17
|
An initialization method of non-negative matrix factorization for hyperspectral data unmixing based on spectral shape and information dissimilarity
YUAN Deyou1, YUAN Lin2
1. School of Mathematics dissimilarity and Statistics, Nanyang Institute of Technology, Nanyang 473004, China;
2. School of Economics and Management, Nanyang Institute of Technology, Nanyang 473004, China
Download: PDF(3593 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  When blind signal separation technique is applied to unmixing hyperspectral data, a good initialization is vital for improving separating precision. Aimed at the hyperspectral data with relatively high spatial resolution and simple surface features, the authors put forward a reasonable hypothesis that the data contain pure pixel or approximate pure pixel corresponding to the each type of end-members, and proposed a new initialization method of non-negative matrix factorization(NMF), which has great potential in pixel unmixing. By calculating parameters to quantify the spectral shape and information difference among candidate pixels, this method extracts pure pixels from mixed pixels, recognizes the information dissimilarity among different types of pure pixels and choose the existing pixels that are most suitable for representing each type of end-members as NMF’s initial values. The experimental results show that the method proposed in this paper can improve NMF’s decomposition accuracy of hyperspectral data significantly, and its performance is better than that of other NMF initialization methods.
Keywords Dianchi watershed      water erosion desertification      remote sensing      dynamic monitoring     
:  TP751  
Issue Date: 04 December 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Qingyun
ZHAO Zhifang
SONG Kun
YAN Jieru
Cite this article:   
SHI Qingyun,ZHAO Zhifang,SONG Kun, et al. An initialization method of non-negative matrix factorization for hyperspectral data unmixing based on spectral shape and information dissimilarity[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 114-119.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.04.17     OR     https://www.gtzyyg.com/EN/Y2017/V29/I4/114
[1] Berry M W,Browne M,Langville A N,et al.Algorithms and applications for approximate nonnegative matrix factorization[J].Computational Statistics and Data Analysis,2007,52(1):155-173.
[2] 李二森,张保明,杨 娜,等.非负矩阵分解在高光谱图像解混中的应用探讨[J].测绘通报,2011(3):7-10.
Li E S,Zhang B M,Yang N,et al.Discussion of the NMF’s application for hyperspectral imagery unmixing[J].Bulletin of Surveying and Mapping,2011(3):7-10.
[3] Boutsidis C,Gallopoulos E.SVD based initialization:A head start for nonnegative matrix factorization[J].Pattern Recognition,2008,41(4):1350-1362.
[4] Alshabrawy O S,Ghoneim M E,Awad W A,et al.Underdetermined blind source separation based on fuzzy C-means and semi-nonnegative matrix factorization[C]//Proceedings of 2012 Federated Conference on Computer Science and Information Systems.Wroclaw,Poland:IEEE,2012:695-700.
[5] 翟亚利,吴 翊.NMF初始化研究及其在文本分类中的应用[J].计算机工程,2008,34(16):191-193,197.
Zhai Y L,Wu Y.Study of non-negative matrix factorization initialization and its application to text classification[J].Computer Engineering,2008,34(16):191-193,197.
[6] Lee D D,Seung H S.Algorithms for non-negative matrix factorization[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems.Denver,CO:ACM,2000:535-541.
[7] 余先川,安卫杰,吕中华,等.一种基于光谱角和光谱距离自动加权融合分类方法[J].地质学刊,2012,36(1):33-36.
Yu X C,An W J,Lyu Z H,et al.Automatic weighting fusion classification method based on spectral angle and spectral distance[J].Journal of Geology,2012,36(1):33-36.
[8] Wang R J,Zhan Y J,Zhou H F.RETRACTED:A method of underdetermined blind source separation with an unknown number of sources[J].Engineering Applications of Artificial Intelligence,2011:556-562.doi:10.1016/j.engappai.2011.06.003.
[9] 毋文峰,陈小虎,苏勋家,等.基于峭度的ICA特征提取和齿轮泵故障诊断[J].机械科学与技术,2011,30(9):1583-1587.
Wu W F,Chen X H,Su X J,et al.ICA feature extraction and fault diagnosis based on Kurtosis for a gear pump[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(9):1583-1587.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech