Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 217-223     DOI: 10.6046/gtzyyg.2018.01.30
Orginal Article |
Lake changes in spatial evolution and driving force for the water area change of the Manas Lake in Xinjiang in the past forty years
Hurixbek·Ziyinali1(), Zhaopeng WU1,2(), Kazya·Baolangtijiang1
1. College of Geography and Tourism Science, Xinjiang Normal University, Urumqi 830054, China
2. Key Laboratory of Arid Land Lake Environment and Resource Xinjiang Uyghur Autonomous Region, Urumqi 830054, China
Download: PDF(987 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the Manas Lake in Xinjiang as the study area,by using eight remote sensing images from 1972 to 2014, and on the basis of extracting the information of lake water, the authors analyzed the evolution of the Manas Lake area in the past forty years. The results are as follows: The Manas Lake showed a significant “increase-decrease-increase-decrease” trend of change from 1972 to 2014, and the barycenter of water area was migrating in southwest direction. Lake had dried up from 1972 to 1999, then it restored the largest water area (248.69 km2) in 2000,and after that it experienced two shrinking periods that happened in 2000—2008 and 2011—2014 respectively. Calculation result of area variation amplitude and dynamic degree shows that the shrinking period of the water area was shortened and the shrinking speed increased. In the past forty years or so, the change trend of lake water area was not consistent with the change trend of the Manas River. The authors point out that climate change has little effect on the change of the water area of the Manas Lake, but has an intimate relationship with extraordinary flood caused by extremely high temperature and extreme precipitation, and that human activities in the basin constitute the main reason for the evolution of the Manas Lake, which causes the declining of the function of supplying water resources to the lower reaches.

Keywords Manas Lake      spatial evolution      driving forces      remote sensing     
:  X144  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hurixbek·Ziyinali
Zhaopeng WU
Kazya·Baolangtijiang
Cite this article:   
Hurixbek·Ziyinali,Zhaopeng WU,Kazya·Baolangtijiang. Lake changes in spatial evolution and driving force for the water area change of the Manas Lake in Xinjiang in the past forty years[J]. Remote Sensing for Land & Resources, 2018, 30(1): 217-223.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.30     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/217
Fig.1  Location of the study area
序号 数据类型 行列号 获取时间 空间分辨率/m
1 MSS 144/28 19720901 60
2 ETM+ 144/28 20000706 30
3 ETM+ 144/28 20030731 30
4 ETM+ 144/28 20060605 30
5 ETM+ 144/28 20080610 30
6 TM 144/28 20110713 30
7 OLI 144/28 20130702 30
8 OLI 144/28 20140721 30
Tab.1  Remote sensing images
Fig.2  Band catastrophe curve of remote sensing images
获取时间 数据类型 波段类型 阈值范围
19720901 MSS NDVI [-0.36,-0.10]
20000706 ETM+ NDVI [-1.14 ,-0.11]
20030731 ETM+ NDVI [-0.79,-0.43]
20060605 ETM+ NDVI [-0.66,-0.29]
20080610 ETM+ NDVI [-0.58,-0.31]
20110713 TM NDVI [-1.56,-0.27]
20130702 OLI B5 [574 ,1 335]
20140721 OLI B5 [582 ,1 391]
Tab.2  Bands threshold range of remote sensing images
Fig.3  Spatial evolution in Manas Lake
Fig.4  Statistic of water area in Manas Lake
Fig.5  Lake center migration of Manas Lake
年份 变化面积/km2 变化幅度
(R)/%
动态度
(Rs)/%
1972—2000年 239.28 2 542.83 90.82
2000—2003年 -48.78 -19.61 -6.54
2003—2006年 -126.40 -63.23 -21.07
2006—2008年 -68.36 -92.99 -46.49
2008—2011年 238.33 4 627.77 1 542.59
2011—2013年 -135.36 -55.59 -27.79
2013—2014年 -102.64 -94.93 -94.93
1972—2014年 -3.93 -41.76 -99.44
Tab.3  Area change and change extent of water area of Manas Lake
Fig.6  Runoff volume of Kensiwate hydrological station
Fig.7  Maximum runoff of Manas River
Fig.8  Changes of population and GDP in Manas River basin from 1970 to 2014
[1] 柯长青. 湖泊遥感研究进展[J]. 海洋湖沼通报, 2004(4):81-86.
[1] Ke C Q.A review of monitoring lake environment change by means of remote sensing[J]. Transactions of Oceanology and Limnology, 2004(4):81-86.
[2] 阿布都米吉提·阿布力克木,阿里木江·卡斯木,艾里西尔·库尔班,等.近40年台特玛—康拉克湖泊群水域变化遥感监测[J].湖泊科学,2014,26(1):46-54.
[2] Ablekim A,Kasimu A,Kurban A,et al.Monitoring the water area changes in Tetima—Kanglayka Lakes region over the past four decades by remotely sensed data[J].Journal of Lake Sciences,2014,26(1):46-54.
[3] 成晨,傅文学,胡召玲,等.基于遥感技术的近30年中亚地区主要湖泊变化[J].国土资源遥感,2015,27(1):146-152.doi:10.6046/gtzyyg.2015.01.23.
[3] Cheng C,Fu W X,Hu Z L,et al.Changes of major lakes in Central Asia over the past 30 years revealed by remote sensing technology[J].Remote Sensing for Land and Resources,2015,27(1):146-152.10.6046/gtzyyg.2015.01.23.
[4] 张振瑜,王乃昂,吴月,等.1973—2010年巴丹吉林沙漠腹地湖泊面积空间变化的遥感分析[J].湖泊科学,2013,25(4):514-520.
[4] Zhang Z Y,Wang N A,Wu Y,et al.Remote sensing on spatial changes of lake area in Badain Jaran Desert hinterland during 1973—2010[J].Journal of Lake Sciences,2013,25(4):514-520.
[5] 张飞,王娟,塔西甫拉提·特依拜,等.1998—2013年新疆艾比湖湖面时空动态变化及其驱动机制[J].生态学报,2015,35(9):2848-2859.
[5] Zhang F,Wang J,Tashpolat T,et al.The spatial and temporal dynamic changes and driving forces in the surface area of Ebinur Lake from 1998—2013[J].Acta Ecologica Sinica,2015,35(9):2848-2859.
[6] 封玲,田晓明.玛纳斯河流域农业开发与水资源分配格局的改变及其生态效应[J].中国农史,2006,25(1):119-126,133.
[6] Feng L,Tian X M.The change of water resource distribution and its ecological effects caused by the agriculture development in Manasi River Valley in modern time[J].Agricultural History of China,2006,25(1):119-126,133.
[7] 郭敬辉,汤奇成,郭知教,等.新疆水文地理[M].北京:科学出版社,1966:36-41.
[7] Guo J H,Tang Q C,Guo Z J,et al.Hydrological Geography in Xinjiang[M].Beijing:Science Press,1966:36-41.
[8] 李晖,肖鹏峰,冯学智,等.近30年三江源地区湖泊变化图谱与面积变化[J].湖泊科学,2010,22(6):862-873.
[8] Li H,Xiao P F,Feng X Z,et al.Lake changes in spatial evolution and area in source region of Three Rivers in recent 30 years[J].Journal of Lake Sciences,2010,22(6):862-873.
[9] 李磊,李艳红,陈成贺日,等.1972—2011年期间艾比湖面积变化研究[J].湿地科学,2014,12(2):263-267.
[9] Li L,Li Y H,Chen C H R,et al.Change of Ebinur Lake area during 1972—2011[J].Wetland Science,2014,12(2):263-267.
[10] 许诗,刘志明,王宗明,等.1986—2008年吉林省湖泊变化及驱动力分析[J].湖泊科学,2010,22(6):901-909.
[10] Xu S,Liu Z M,Wang Z M,et al.Dynamics of lake area changes and its driving force analysis in Jilin Province from 1986 to 2008[J].Journal of Lake Sciences,2010,22(6):901-909.
[11] 姚永慧,汪小钦,周成虎,等.新疆玛纳斯湖近50年来的变迁[J].水科学进展,2007,18(1):17-23.
[11] Yao Y H,Wang X Q,Zhou C H,et al.Changes of Manas Lake in the past 50 years in Xinjiang Province[J].Advances in Water Science,2007,18(1):17-23.
[12] Estrella N,Menzel A.Recent and future climate extremes arising from changes to the bivariate distribution of temperature and precipitation in Bavaria,Germany[J].International Journal of Climatology,2013,33(7):1687-1695.
[13] 赵勇,黄丹青,朱坚,等.北疆极端降水事件的区域性和持续性特征分析[J].冰川冻土,2011,33(3):524-531.
[13] Zhao Y,Huang D Q,Zhu J,et al.The feature analysis of regional and persistent extreme precipitation events in Northern Xinjiang Region[J].Journal of Glaciology and Geocryology,2011,33(3):524-531.
[14] 邹全,王国亚,贺斌,等.1957—2010年天山玛纳斯河流域夏季径流及洪水过程对极端气候事件的响应[J].冰川冻土,2013,35(3):733-740.
[14] Zou Q,Wang G Y,He B,et al.Responding of summer runoff and flood processes to extreme climate events in Manas River basin,Tianshan Mountains during 1957—2010[J].Journal of Glaciology and Geocryology,2013,35(3):733-740.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech