Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 74-81     DOI: 10.6046/gtzyyg.2018.04.12
|
Research on high resolution remote sensing recognition method of elm sparse forest in Otindag sandy land
Chuanping XUE, Zhihai GAO(), Bin SUN, Changlong LI, Yan WANG, Yuanyuan ZHANG
Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
Download: PDF(3198 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The elm sparse forest is an important component in the Otindag sandy land ecosystem, which is of great significance for windbreak and sand fixation. In order to obtain the spatial distribution information of elm trees quickly and accurately, this paper proposes a method of automatic sand elm identification based on remote sensing technology. With the data of domestic high spatial resolution satellite GF-2, the research was implemented on Zhenglan Banner, Xilin Gol League, Inner Mongolia. Combined with the characteristics of elm sparse distribution in the sand, normalizd difference vegetation index (NDVI) threshold was firstly used to quickly extract the coarse distribution of elm. Then, a method based on geographic object based image analysis (GEOBIA) was used to extract the distribution of elm accurately. To compensate for the uncertainty of GEOBIA method in feature selection and rule set construction, this study used SEaTH algorithm to optimize features and automatically calculate the feature threshold. The results show that the proposed methods reached the overall accuracy of 88.17% and Kappa coefficient of 0.76 in identifying the sparse elm. Among them, elm mapping accuracy could reach 99.14%. Therefore, it is effective to identify elms by using GF-2 and the method proposed in this study. This method can provide technical support for the further research and production practices of elm sparse forest in the Otindag sandy land.

Keywords Otindag sandy land      elm      sparse      GF-2      GEOBIA      SEaTH     
:  TP79  
Corresponding Authors: Zhihai GAO     E-mail: zhgao@caf.ac.cn
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuanping XUE
Zhihai GAO
Bin SUN
Changlong LI
Yan WANG
Yuanyuan ZHANG
Cite this article:   
Chuanping XUE,Zhihai GAO,Bin SUN, et al. Research on high resolution remote sensing recognition method of elm sparse forest in Otindag sandy land[J]. Remote Sensing for Land & Resources, 2018, 30(4): 74-81.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.12     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/74
Fig.1  Location of the study site
参数 参数值
光谱范围/μm 全色 0.45~0.90
多光谱 0.45~0.52
0.52~0.59
0.63~0.69
0.77~0.89
空间分辨率/m 全色 1
多光谱 4
幅宽/km 45 (2台相机组合)
轨道高度/km 631
重访周期 不侧摆时,69 d可完成全球无缝覆盖观测,
侧摆时,重访周期不大于5 d
Tab.1  GF-2 satellite sensor parameters
Fig.2  Process of elm coarse extraction
对象特征 最小值 最大值 均值 公式
NDVI均值 0.13 0.73 0.52 b=1n×i=1nbi
NIR标准差 488 1 123 713 σ=1n×i=1n(ci-c)2
面积 40 2 236 250 a=n×p
椭圆度 0.43 0.96 0.86
圆度 0.04 1.2 0.26 r=s-l
Tab.2  Eigenvalue statistics of reference data
Fig.3  Results of local elm coarse extraction
相关性 B1 B2 B3 B4 标准差
B1 1 0.99 0.98 0.84 476.5
B2 1 0.99 0.88 615.5
B3 1 0.87 786.8
B4 1 661.8
Tab.3  Standard deviation and correlation coefficient of GF-2 Bands
波段组合 OFI指数
B1,B2,B3 634.7
B1,B2,B4 647.1
B1,B3,B4 715.6
B2,B3,B4 753.3
Tab.4  OIF value of GF-2
Fig.4  Segmentation results in local region
地物类别 区分类别 区分规则 J-M距离 T m2
榆树 灌木 Ratio G<0.183 1.61 0.173 0.192
草地 Standard deviation NIR>123 1.79 123 70
草本湿地 GLCM Entropy (90)<5.97 1.61 5.54 6.40
人工杨树林 Ratio R>0.119 6 1.83 0.119 6 0.095 4
沙地 HSI Transformation Intensity(R=r,G=g,B=b)<0.027 1.93 0.027 0.047
Tab.5  Extraction rules of elm
Fig.5  Results of local elm recognition
识别类型 背景 榆树 总计
背景 298 2 300
榆树 69 231 300
总计 367 233 600
用户精度/% 99.33 77
制图精度/% 81.20 99.14
总体精度/% 88.17
Kappa 0.76
Tab.6  Accuracy evaluation of elm recognition
[1] 彭羽, 蒋高明, 郭泺 , 等. 浑善达克沙地中部榆树疏林景观格局[J]. 科技导报, 2011,29(25):45-47.
doi: 10.3981/j.issn.1000-7857.2011.25.006 url: http://d.wanfangdata.com.cn/Periodical/kjdb201125010
[1] Peng Y, Jiang G M, Guo L , et al. Landscape pattern of elm open forest in the center part of Hunshandake sandland[J]. Science Technology Review, 2011,29(25):45-47.
[2] 于顺利, 陈宏伟 . 内蒙古高原温带稀树草原生态系统特征与成因[J]. 生态学杂志, 2007,26(4):549-554.
url: http://www.cqvip.com/Main/Detail.aspx?id=24353749
[2] Yu S L, Chen H W . Characteristics and formation causes of temperate sparse forest grassland ecosystem in Inner Mongolia Plateau[J]. Chinese Journal of Ecology, 2007,26(4):549-554.
[3] 李永庚, 蒋高明, 高雷明 , 等. 人为干扰对浑善达克沙地榆树疏林的影响[J]. 植物生态学报, 2003,27(6):829-834.
doi: 10.17521/cjpe.2003.0119 url: http://d.wanfangdata.com.cn/Periodical/zwstxb200306016
[3] Li Y G, Jiang G M, Gao L M , et al. Impacts of human disturbance on elms-motte-veldt in Hunshandak sandland[J]. Acta Phytoecologica Sinica, 2003,27(6):829-835.
[4] 牛海亮 . 浑善达克沙地榆树疏林榆树种群特征分析[D]. 呼和浩特:内蒙古大学, 2008.
[4] Niu H L . Analysis of Population Characteristics of Ulmus Pumila Sparse Forest in Hunshandake Sandy Land[D]. Hohhot:Inner Mongolia Agricultural University, 2008.
[5] 赵国青 . 正蓝旗古榆树种群特征及林下植物多样性的研究[D]. 呼和浩特:内蒙古农业大学, 2011.
[5] Zhao G Q . Study on the Population Characteristics of Ancience Elm in Zhenglan Banner[D]. Hohhot:Inner Mongolia Agricultural University, 2011.
[6] 李钢铁, 姚云峰, 左合君 . 浑善达克沙地桑根达来地区榆树疏林的分布与立地因子的关系的研究[J]. 世界林业研究, 2008,21:82-86.
url: http://d.wanfangdata.com.cn/Conference/7142115
[6] Li G T, Yao Y F, Zuo H J . Study on the relation between growth and site of Ulmus pumila L.var.sabulosa J.H.Guo in Otingdag sandy land[J]. World Forestry Research, 2008,21:82-86.
[7] 顾海燕, 闫利, 李海涛 , 等. 基于随机森林的地理要素面向对象自动解译方法[J]. 武汉大学学报(信息科学版), 2016,41(2):228-234.
doi: 10.13203/j.whugis20140102 url: http://www.cqvip.com/QK/92848A/201602/667775450.html
[7] Gu H Y, Yan L, Li H T , et al. An object-based automatic interpretation method for geographic features based on random forest machine learning[J]. Geomatics and Information Science of Wuhan University, 2016.
[8] Laliberte A S, Fredrickson E L, Rango A . Combining decision trees with hierarchical object-oriented image analysis for mapping arid rangelands[J]. Photogrammetric engineering and Remote sensing, 2007,73(2):197-207.
doi: 10.14358/PERS.73.2.197 url: http://openurl.ingenta.com/content/xref?genre=article&amp;issn=0099-1112&amp;volume=73&amp;issue=2&amp;spage=197
[9] Gibbes C, Adhikari S, Rostant L , et al. Application of object based classification and high resolution satellite imagery for savanna ecosystem analysis[J]. Remote Sensing, 2010,2(12):2748-2772.
doi: 10.3390/rs2122748 url: http://www.mdpi.com/2072-4292/2/12/2748
[10] Boggs G S . Assessment of SPOT 5 and QuickBird remotely sensed imagery for mapping tree cover in savannas[J]. International journal of applied earth observation and geoinformation, 2010,12(4):217-224.
doi: 10.1016/j.jag.2009.11.001 url: http://linkinghub.elsevier.com/retrieve/pii/S0303243409001068
[11] 施敏燕, 郭春雷, 杨小婷 , 等. 基于Quickbird影像的额济纳胡杨林树冠提取[J].科技创新导报, 2011(5):13-15.
[11] Shi M Y, Guo C L, Yang X T , et al. Canopy extraction of Populus euphratica forest in Ejina based on Quickbird image[J].Science and Technology innovation Heraid,2011(5):13-15.
[12] 张靖媛 . 浑善达克沙地桑根达来地区榆树疏林林草特征的研究[D]. 呼和浩特:内蒙古农业大学, 2009.
[12] Zhang J Y . Studies on Characteristics of Trees and Grass Ulmus pumila L.var.sabulosa Woodland of Sanggendalai in Hunshandake Sandy Land[D]. Hohhot:Inner Mongolia Agricultural University, 2009.
[13] 徐文铎 . 中国沙地森林生态系统[M]. 北京: 中国林业出版社, 1998.
[13] Xu W D. Sandy Forest Ecosystem of China[M]. Beijing: China Forestry Publishing House, 1998.
[14] Whiteside T G, Boggs G S, Maier S W . Extraction of tree crowns from high resolution imagery over Eucalypt dominant tropical savannas[J]. Photogrammetric Engineering and Remote Sensing, 2011,77(8):813-824.
doi: 10.14358/PERS.77.8.813 url: http://openurl.ingenta.com/content/xref?genre=article&amp;issn=0099-1112&amp;volume=77&amp;issue=8&amp;spage=813
[15] Karlson M, Reese H, Ostwald M . Tree crown mapping in managed woodlands (parklands) of semi-arid West Africa using WorldView-2 imagery and geographic object based image analysis[J]. Sensors, 2014,14(12):22643-22669.
doi: 10.3390/s141222643 pmid: 25460815 url: http://www.mdpi.com/1424-8220/14/12/22643
[16] Nussbaum S, Niemeyer I, Canty M J. SEATH-a new tool for automated feature extraction in the context of object-based image analysis [C]//1st International Conference on Object-based Image Analysis (OBIA).Salzburg:Austria. 2006.
[17] 余晓敏, 湛飞并, 廖明生 , 等. 利用改进SEaTH算法的面向对象分类特征选择方法[J]. 武汉大学学报(信息科学版), 2012,37(8):921-924.
[17] Yu X M, Zhan F B, Liao M S , et al. Object-oriented feature selection algorithms based on improved SEaTH algorithms[J]. Geomatics and Information Science of Wuhan University, 2012,37(8):921-924.
[18] Marpu P R, Niemeyer I, Nussbaum S , et al. A procedure for automatic object-based classification[J]. Lecture Notes in Geoinformation and Cartography, 2008: 169-184.
doi: 10.1007/978-3-540-77058-9_9 url: http://link.springer.com/10.1007/978-3-540-77058-9_9
[19] Ren D, Abdelsalam M G. Optimum index factor (OIF) for ASTER data:Examples from the Neoproterozoic Allaqi Suture,Egypt [C]//Geological Society of American Annual Meeting. 2001: 289-290.
[1] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[2] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[3] HU Guoqing, CHEN Donghua, LIU Congfang, XIE Yimei, LIU Saisai, LI Hu. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
[4] Wenya LIU, Anzhi YUE, Jue JI, Weihua SHI, Ruru DENG, Yeheng LIANG, Longhai XIONG. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 120-129.
[5] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[6] Guangyu ZHOU, Bangquan LIU, Dan ZHANG. Target recognition in SAR images based on variational mode decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(2): 33-39.
[7] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[8] Jianyu LIU, Ling CHEN, Wei LI, Genhou WANG, Bo WANG. Application of the theory of structural hierarchy to the remote sensing geology[J]. Remote Sensing for Land & Resources, 2019, 31(3): 166-173.
[9] Feng FU, Xinjie WANG, Jin WANG, Na WANG, Jihong TONG. Tree species and age groups classification based on GF-2 image[J]. Remote Sensing for Land & Resources, 2019, 31(2): 118-124.
[10] Zengfu HOU, Rongyuan LIU, Bokun YAN, Kun TAN. Hyperspectral imagery anomaly detection based on band selection and learning dictionary[J]. Remote Sensing for Land & Resources, 2019, 31(1): 33-41.
[11] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
[12] Xiaofang SUN. Sparse coefficient NMF fusion via PCA united dictionary[J]. Remote Sensing for Land & Resources, 2018, 30(4): 56-61.
[13] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[14] Yiqun HU, Shaoguang ZHOU, Shun YUE, Xiaoqing LIU. Remote sensing image retrieval based on sparse local invariant features[J]. Remote Sensing for Land & Resources, 2018, 30(2): 38-44.
[15] Ma Xiuqiang, Peng Ling, Xu Suning, Ding Zhilei. Application of GF-2 satellite data to mine geological environment investigation in Daye, Hubei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 127-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech