Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 15-22     DOI: 10.6046/gtzyyg.2020.03.03
|
Remote sensing image semantic segmentation using deep fusion convolutional networks and conditional random field
LI Yu1(), XIAO Chunjiao1, ZHANG Hongqun1(), LI Xiangjuan2, CHEN Jun1
1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2. School of Computer Science, Xi’an Shiyou University, Xi’an 710065, China
Download: PDF(2927 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

A method for remote sensing image semantic segmentation based on deep fusion convolutional networks and conditional random field is proposed. First, the fully convolutional networks framework with deconvolutional fusion structure is utilized to integrate the pooling-layer results at different levels. The low-level features with rich detail information are combined with the high-level features via deconvolutional fusion module. At the same time, the parameter inference process of conditional random field is embedded in the network architecture by adding recurrent neural networks iteration layers. In addition, the deep fusion convolutional networks and conditional random field model is established. Then, in the model training stage, the abundant detail information and context information in the image are introduced simultaneously to the positive and negative propagation. And lastly, the remote sensing image semantic segmentation is accomplished by the end-to-end framework. Semantic segmentation experiments were performed on the high-resolution optical remote sensing images, and the results show that, with the increase of the depth of deconvolution fusion layer in the model, semantic segmentation results are more refined, and the contour of terrestrial object is more accurate. The introduction of context information also improves the accuracy of image semantic segmentation to a certain extent. It is concluded that the proposed method can better maintain the consistency of internal areas of semantic object and effectively improve the accuracy of semantic segmentation.

Keywords remote sensing image      semantic segmentation      fully convolutional networks      conditional random field     
:  TP751  
Corresponding Authors: ZHANG Hongqun     E-mail: liyu@radi.ac.cn;zhanghq@aircas.ac.cn
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu LI
Chunjiao XIAO
Hongqun ZHANG
Xiangjuan LI
Jun CHEN
Cite this article:   
Yu LI,Chunjiao XIAO,Hongqun ZHANG, et al. Remote sensing image semantic segmentation using deep fusion convolutional networks and conditional random field[J]. Remote Sensing for Land & Resources, 2020, 32(3): 15-22.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.03     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/15
Fig.1  Flow chart of the image semantic segmentation algorithm
Fig.2  Model map of DFN-CRF
模型 训练时间/min 测试时间/s
DFN-CRF-5 474 0.61
DFN-CRF-4 5 013 0.69
DFN-CRF-3 5 237 0.73
DFN-CRF-2 5 589 0.74
DFN-CRF-1 5 976 0.77
Tab.1  Training and testing time of each model
Tab.2  Comparison with the semantic segmentation results of DFN-CRF using different levels of fusion structure
模型 PA CA MIOU
DFN-CRF-5 0.908 990 0.855 277 0.768 730
DFN-CRF-4 0.910 455 0.878 851 0.799 701
DFN-CRF-3 0.918 773 0.897 060 0.809 149
DFN-CRF-2 0.918 969 0.898 627 0.816 557
DFN-CRF-1 0.919 967 0.900 086 0.819 535
Tab.3  Training and testing time of each model
模型 训练时间/min PA CA MIOU
DFN-1 5 749 0.912 465 0.883 090 0.811 262
DFN-CRF-1 5 976 0.919 967 0.900 086 0.819 535
Tab.4  Quantitative evaluation of semantic segmentation results of DFN-1 and DFN-CRF-1
Fig.3  PA contrast diagram of different model’s results between DFN-1 and DFN-CRF-1
模型 训练时间/min MIOU
DeepLab 1 692 0.783 401
CRFasRNN 4 853 0.798 024
FCN8s 4 917 0.805 267
DFN-CRF-1 5 976 0.819 535
Tab.5  Comparison between our method and other methods
Fig.4-1  Experimental results of UC Merced Land-Use dataset
Fig.4-2  Experimental results of UC Merced Land-Use dataset
[1] 魏云超, 赵耀. 基于DCNN的图像语义分割综述[J]. 北京交通大学学报, 2016,40(4):82-91.
[1] Wei Y C, Zhao Y. A review on image semantic segmentation based on DCNN[J]. Journal of Beijing Jiaotong University, 2016,40(4):82-91.
[2] 罗冰. 语义对象分割方法研究[D]. 成都:电子科技大学, 2018.
[2] Luo B. Research on segmentation of semantic objects[D]. Chengdu:University of Electronic Science and Technology of China, 2018.
[3] 韩铮, 肖志涛. 基于纹元森林和显著性先验的弱监督图像语义分割方法[J]. 电子与信息学报, 2018,40(3):610-617.
[3] Han Z, Xiao Z T. Weakly supervised semantic segmentation based on semantic texton forest and saliency prior[J]. Journal of Electronics & Information Technology, 2018,40(3):610-617.
[4] Zhao J, Zhong Y F, Zhang L P. Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015,53(5):2440-2452.
[5] 叶发茂, 罗威, 苏燕飞, 等. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019,31(2):32-37.doi: 10.6046/gtzyyg.2019.02.05.
[5] Ye F M, Luo W, Su Y F, et al. Application of convolutional neural network feature to remote sensing image registration[J]. Remote Sensing for Land and Resources, 2019,31(2):32-37.doi: 10.6046/gtzyyg.2019.02.05.
[6] Zhao W D, Li S S, Li A, et al. Hyperspectral images classification with convolutional neural network and textural feature using limited training samples[J]. Remote Sensing Letters, 2019,10(5):449-458.
doi: 10.1080/2150704X.2019.1569274 url: https://www.tandfonline.com/doi/full/10.1080/2150704X.2019.1569274
[7] 张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018,30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
[7] Zhang K, Hei B Q, Li S Y, et al. Complex scene classification of remote sensing images based on CNN[J]. Remote Sensing for Land and Resources, 2018,30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
[8] Zhang R, Li G Y, Li M L, et al. Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,143:85-96.
doi: 10.1016/j.isprsjprs.2018.04.022 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271618301291
[9] Kanmffmeyer M, Salberg A B, Jenssen R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks [C]//Proceedings of Computer Vision and Pattern Recognition Workshops. 2016: 680-688.
[10] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015: 3431-3440.
[11] Sherrah J. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery[EB/OL].(2016-06-08)[2019-08-16]. http://arxiv.org/abs/1606.02585v1.
url: http://arxiv.org/abs/1606.02585v1
[12] Badrinarayanan V, Handa A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,309(12):2481-2495.
[13] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation [C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin:Springer, 2015: 234-241.
[14] Chen L C, Papandreou G, Kokkinos L, et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184 pmid: 28463186 url: https://www.ncbi.nlm.nih.gov/pubmed/28463186
[15] Zheng S, Jayasumana S, Romera-Paredes B, et al. Conditional random fields as recurrent neural networks [C]//IEEE International Conference on Computer Vision. 2015: 1529-1537.
[16] Lafferty J, Mccallum A, Pereira F. Conditional random fields:Probabilistic models for segmenting and labeling sequence data [C]//Eighteenth International Conference on Machine Learning. 2001,3(2):282-289.
[17] Hammersley J M, Clifford P. Markov fields on finite graphs and lattices[EB/OL].[ 2012- 01- 30]. http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf.
url: http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf
[18] Krahenbuhl P, Koltun V. Efficient inference in fully connected CRFs with gaussian edge potentials [C]//Proceeding NIPS’11 Proceeding of the 24th International Conference on Neural Information Processing Systems Advances in Neural Information Processing Systems. 2011: 109-117.
[19] Cheng G, Han J, Lu X Q. Remote sensing image scene classification:benchmark and state of the art [C]//Proceedings of the IEEE. 2017,105(10):1865-1883.
[20] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification [C]//Proceedings of the 18th Sigspatial International Conference on Advances in Geographic Information Systems. 2010: 270-279.
[21] Alberto G G, Sergio O E, Sergiu O, et al. A review on deep learning techniques applied to semantic segmentation[EB/OL].(2017-04-22)[2019-08-16]. http://arxiv.org/abs/1704.06857.
url: http://arxiv.org/abs/1704.06857
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[5] LIU Zhizhong, SONG Yingxu, YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192-199.
[6] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[7] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[8] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[9] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[10] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[11] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[12] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[13] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[14] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[15] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech