Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 144-151     DOI: 10.6046/zrzyyg.2021147
|
Application of label clustering loss in the classification of remote sensing images
SU Fu(), YU Haipeng(), ZHU Weixi
Southwest Petroleum University School of Electrical Engineering and Information, Chengdu 610500, China
Download: PDF(3748 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Scene information of remote sensing images has important application value in image interpretation and actual production and life in various fields. In view of the characteristics of remote sensing images with large intra-class differences and small inter-class differences, this paper further studies the center loss function and proposes a new label clustering loss function. Firstly, the class center is initialized by using the class label center initialization method. Secondly, the sinusoidal attenuation learning rate is used to keep the stability of the class center in the preheating stage. Then, Euclidean distance and cosine distance are used to gather the intra-class features and keep them away from the class center. Furthermore, two network models, VGG16 and ResNet50, are used to verify on NWPU-RESISC45 data set, and the accuracy is improved by 2.3% and 5.7% respectively. Experiments show that the method proposed in this paper can effectively cluster the features and separate class centers, and improve the accuracy of the network model, which has a certain development prospect in the classification of remote sensing images.

Keywords parameter initialization      remote sensing image      loss function      distance between classes      intra-class distance     
Corresponding Authors: YU Haipeng     E-mail: 774052037@qq.com;1377951230@qq.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fu SU
Haipeng YU
Weixi ZHU
Cite this article:   
Fu SU,Haipeng YU,Weixi ZHU. Application of label clustering loss in the classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 144-151.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021147     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/144
Fig.1  Sine attenuation learning rate
算法1:标签聚类损失的正向反向传播算法
1:输入:网络模型最后一层全连接层特征值{ x i},训练批次大小m,迭代次数T,学习率 μ和∂s
2:初始化: softmax损失参数 θ,类标签中心参数 c 0
3: for t=1 to T do
4:计算联合损失: L t o t a l = L s o f t m a x + λ L c
5:更新softmax损失参数:
θ t + 1 = θ t - μ L t s o f t m a x θ t
6:更新类别中心:
c j t + 1 = c j t - s Δ c j t
7:更新模型反向传播误差:
L t t o t a l x i t = L t s o f t m a x x i t + λ L t c x i t
8: end for
Tab.1  Label clustering loss training process
Fig.2  Sample dataset of NWPU-RESISC45
Fig.3  Training step diagram of different loss function
Fig.4  Hyperparametric search graph for different network models
损失函数 VGG16 ResNet50
平均准
确率/%
Kappa系数 平均准
确率/%
Kappa系数
softmax_loss 89.9 0.909 82.9 0.838
center_loss 90.3 0.911 83.2 0.841
no label_loss 91.8 0.922 84.6 0.858
label_loss 92.2 0.926 88.6 0.898
Tab.2  Test results of different loss functions in different network models
Fig.5  Two dimensional feature map of VGG16 network model with different loss functions
Fig.6  Comparison of accuracy of different loss functions and scenarios
方法 准确率/%
Fine-tuned AlexNet[13] 81.22
AlexNet+MSCP[14] 81.70
ResNet18[15] 81.10
ResNet50 82.90
Fine-tuned GoogleNet[13] 82.57
VGG-VD16+MSCP[13] 85.33
Fine-tuned VGGNet-16[13] 87.15
ResNetP18[17] 89.13
AlexNet+SVM[18] 90.50
IORN4-VGG16[19] 91.30
文献[16] 91.18
文献[15] 91.97
本文方法 92.20
Tab.3  Classification accuracy of different methods
[1] 李冠东, 张春菊, 王铭恺, 等. 卷积神经网络迁移的高分影像场景分类学习[J]. 测绘科学, 2019, 44(4):116-123,174.
[1] Li G D, Zhang C J, Wang M K, et al. High resolution remote sensing image classification learning based on convolutional neural network migration[J]. Surveying and Mapping Science, 2019, 44(4):116-123,174.
[2] 何小飞, 邹峥嵘, 陶超, 等. 联合显著性和多层卷积神经网络的高分影像场景分类[J]. 测绘学报, 2016, 45(9):1073-1080.
[2] He X F, Zou Z R, Tao C, et al. High resolution image scene classification based on saliency and multilayer convolutional neural network[J]. Acta Surveying and Mapping, 2016, 45(9):1073-1080.
[3] Liu Y, Zhong Y, Qin Q. Scene classificationbased on multiscale convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12):7109-7121.
doi: 10.1109/TGRS.2018.2848473 url: https://ieeexplore.ieee.org/document/8421052/
[4] Zan C, Wang S, X Hou, et al. Recurrent transformer network for remote sensing scene categorisation[C]. // Proceedings of the 2018 British Machine Vision Conference.Durham:BMVA, 2018:266.
[5] Wang Q, Liu S, Chanussot J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):1155-1167.
doi: 10.1109/TGRS.2018.2864987 url: https://ieeexplore.ieee.org/document/8454883/
[6] Sun H, Li S, Zheng X, et al. Remote sensing scene classification by gated bidirectional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019(99):1-15.
[7] Li Y, Liu M, Zhang S. Classification of optical remote sensing images based on convolutional neural network[C]// 2019 6th International Conference on Control,Decision and Information Technologies (CoDIT).IEEE, 2019:801-806.
[8] 杨斌, 李成华, 江小平, 等. 一种用于提升深度学习分类模型准确率的正则化损失函数[J]. 中南民族大学学报(自然科学版), 2020, 39(1):74-78.
[8] Yang B, Li C H, Jiang X P, et al. A regularized loss function for improving the accuracy of deep learning classification model[J]. Journal of Central South University for Nationalities,Natural Science Edition, 2020, 39(1):74-78.
[9] Liu Y, Huang C. Scene classification via triplet networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(1):220-237.
[10] Khatun A, Denman S, Sridharan S, et al. Joint identification-verification for person re-identification:A four stream deep learning approach with improved quartet loss function[J]. Computer Vision and Image Understanding, 2020,197-198:102989.
[11] Shi W, Gong Y, Tao X, et al. Fine-grained image classification using modified DCNNs trained by cascaded softmax and generalized large-margin losses[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(3):683-694.
doi: 10.1109/TNNLS.2018.2852721 url: https://ieeexplore.ieee.org/document/8419081/
[12] Reddy A C, Saraschandrika A, Reddy A V. Study of the Clustering algorithms for hyper spectral remote sensing images[J]. Journal of Hyperspectral Remote Sensing, 2020, 10(2):117-121.
doi: 10.29150/jhrs.v10.2.p117-121 url: https://periodicos.ufpe.br/revistas/jhrs/article/view/246329
[13] Gong C, Han J, Lu X. Remote sensing image scene classification:Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883.
doi: 10.1109/JPROC.2017.2675998 url: http://ieeexplore.ieee.org/document/7891544/
[14] He N, Fang L, Li S, et al. Remote sensing scene classification using multilayer stacked covariance pooling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,(99):1-12.
[15] 杨宏炳, 迟勇欣, 王金光. 基于剪枝网络的知识蒸馏对遥感卫星图像分类方法[J/OL]. 计算机应用研究, 2021, 38(8):2469-2473.
[15] Yang H B, Chi Y X, Wang J G. Remote sensing satellite image classification method based on knowledge distillation of pruning net work[J/OL]. Computer Application Research, 2021, 38(8):2469-2473.
[16] 马欣悦, 王梨名, 祁昆仑, 等. 基于多尺度循环注意力网络的遥感影像场景分类方法[J]. 地球科学, 2021, 46(10):3740-3752.
[16] Ma X Y, Wang L M, Qi K L, et al. Remotesensing image scene classification method based on multi-scale cyclic attention network[J]. Earth Science, 2021, 46(10):3740-3752.
[17] Zhou Z, Zheng Y, Ye H, et al. Satellite image scene classification via ConvNet with context aggregation[J]. PCM, 2018(2):329-339.
[18] 业巧林, 许平, 张冬. 基于深度学习特征和支持向量机的遥感图像分类[J]. 林业工程学报, 2019, 4(2):125-131.
[18] Ye Q L, Xu X P, Zhang D. Remote sensing image classification based on deep learning feature and support vector machine[J]. Journal of Forestry Engineering, 2019, 4(2):125-131.
[19] Wang J, Liu W, Ma L, et al. IORN:An effective remote sensing image scene classification framework[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1695-1699.
doi: 10.1109/LGRS.2018.2859024 url: https://ieeexplore.ieee.org/document/8434220/
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[3] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[4] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[5] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[6] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[7] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[8] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[9] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[10] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[11] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[12] CHENG Tao. A method for vector geographic information acquisition based on synchronous correction with remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 59-64.
[13] TANG Wenkui, YU Lu, ZHOU Weiqi, YUE Jun, ZHOU Zheng. Dynamic changes in the landscape connectivity in Shenzhen City determined based on the long time series of remote sensing data[J]. Remote Sensing for Natural Resources, 2022, 34(3): 97-105.
[14] MA Xiaojian, ZHAO Fashun, LIU Yanbin. Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 17-26.
[15] SUN Yu, HUANG Liang, ZHAO Junsan, CHANG Jun, CHEN Pengdi, CHENG Feifei. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech