Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 63-71     DOI: 10.6046/zrzyyg.2021207
|
Method to calibrate the coordinates of transmission towers based on satellite images
MA Yutang1(), PAN Hao1, ZHOU Fangrong1, HUANG Ran1, ZHAO Jianeng1, LUO Jiqiang2, LIU Jing2,3, SUN Haoxuan4(), JIA Weijie5, ZHANG Tao6
1. Joint Laboratory of Power Remote Sensing Technology, Electric Power Research Institute, Yunnan Power Grid Company Ltd., Kunming 650217, China
2. China Academy of Space Technology Institute of Spacecraft System Engineering, Beijing 100094, China
3. School of Computer Science & Engineering, South China University of Technology, Guangzhou 510006, China
4. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
5. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083, China
6. Equipment Procurement Service Center of China’s Central Military Commission (CMC) Equipment Development Department (EDD), Beijing 100009, China
Download: PDF(4996 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to realize the refined line inspection management of transmission lines, improve its operation and maintenance efficiency, realize satellite intelligent inspection, and accurately find the defects and hidden dangers of towers and transmission lines, the paper took the coordinates of transmission line towers in Kunming City, Yunnan Province as an example and proposed a method to calibrate the coordinates of transmission towers using satellite images. The method first uses the reference base-map data as the basis to match the control points and uses the digital elevation model (DEM) to perform geometric correction on the original remote sensing image. Then combined with such technologies as shadow detection and edge detection and visual interpretation, the calibrated tower coordinates are obtained. The experiment verified the geometric correction accuracy of the SuperView-1 (SV1) and Gaofen-2(GF2) satellite images in the Kunming area, and the errors in the plane after correction were 0.931 and 1.387 m, respectively. In addition, the experiment verified the calibration accuracy of the old tower coordinates on the two lines. The results show that the plane accuracy of the tower has increased from 13.811 m and 8.256 m to 5.970 m and 5.104 m, respectively, which meets the basic power grid requirements. This method can realize the calibration of the tower coordinates, reduce the workload of manual inspection, and improve the efficiency of line inspection. With the explosive growth of remote sensing image data, multi-source images from the space and ground will continue to be combined, and the technology for the positioning of transmission towers based on satellite remote sensing images will have a broader development prospect.

Keywords transmission tower      geometric correction      calibration ofcoordinates      DEM      remote sensing     
ZTFLH:  TP79  
Corresponding Authors: SUN Haoxuan     E-mail: 1277396850@qq.com;endu@foxmail.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yutang MA
Hao PAN
Fangrong ZHOU
Ran HUANG
Jianeng ZHAO
Jiqiang LUO
Jing LIU
Haoxuan SUN
Weijie JIA
Tao ZHANG
Cite this article:   
Yutang MA,Hao PAN,Fangrong ZHOU, et al. Method to calibrate the coordinates of transmission towers based on satellite images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 63-71.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021207     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/63
Fig.1  Flowchart of geometric correction based on the reference image

SV-1 GF-2
影像类型 分辨
率/m
获取日期 影像类型 分辨
率/m
获取日期
1 SV1-02多光谱 2 2018.11.14 GF-2多光谱 4 2019.01.23
2 SV1-02全色 0.5 2018.11.14 GF-2全色 1 2019.01.23
3 SV1-03多光谱 2 2018.01.16 GF-2多光谱 4 2019.10.31
4 SV1-03全色 0.5 2018.01.16 GF-2全色 1 2019.10.31
Tab.1  Experimental data
Fig.2  Location relationship between image data and base images
Fig.3  Details of the location relationship between the base images and test images
影像名 匹配
点/
控制
点/
检查点像方
精度/像元
检查点物方精度/m
x y 平面 x y 平面
SV-1-03-
20180116
58 10 1.196 1.179 1.679 0.660 0.626 0.910
SV-1-02-
20181114
58 10 1.205 1.230 1.722 0.615 0.725 0.951
GF2-
20190123
50 10 1.011 1.115 1.505 0.885 0.819 1.206
GF2-
20191031
110 10 1.550 1.237 1.983 1.208 0.998 1.567
Tab.2  Calibration accuracy table of reference image for test image
Fig.4-1  Details of edge connection relationship between underlay and corrected test images
Fig.4-2  Details of edge connection relationship between underlay and corrected test images
Fig.5  Schematic diagram of manual visual interpretation assisted by tower identification
类型 区域1 区域2
x误差 y误差 平面中
误差
x误差 y误差 平面中
误差
旧杆塔台账偏差 5.010 5.744 13.811 6.157 3.502 8.256
校准后杆塔坐标偏差 3.328 2.725 5.970 3.795 3.414 5.104
Tab.3  Calibration accuracy table of towers(m)
[1] 彭向阳, 钱金菊, 麦晓明, 等. 大型无人直升机电力线路全自动巡检技术及应用[J]. 南方电网技术, 2016, 10(2):24-31.
[1] Peng X Y, Qian J J, Mai X M, et al. Automatic power line inspection technology of large unmanned helicopter and its application[J]. Southern Power System Technology, 2016, 10(2):24-31.
[2] 许敏, 宋宁宁, 刘秀娟. 影响雷电定位系统故障查询的原因分析[J]. 山西电力, 2008, 148(4):29-30.
[2] Xu M, Song N N, Liu X J. Cause analysis of factors affect lightning location system fault inquire[J]. Shanxi Electric Power, 2008, 148(4):29-30.
[3] 陈家宏, 张勤, 冯万兴, 等. 中国电网雷电定位系统与雷电监测网[J]. 高电压技术, 2008, 34(3):425-431.
[3] Chen J H, Zhang Q, Feng W X, et al. Lightning location system and lightning detection network of China power grid[J]. High Voltage Engineering, 2008, 34(3):425-431.
[4] 于旭宅. 基于LiDAR数据的输电线路通道危险区域提取方法研究[D]. 北京: 北京林业大学, 2018.
[4] Wang X Z. Study on the dangerous area extraction of transmission line passage based on LiDAR data[D]. Beijing: Beijing Forestry University, 2018.
[5] 李伟性, 李兴, 冯家荣, 等. 探讨基于大地坐标系求解输电线路杆塔坐标的方法[J]. 广西电力, 2007(4):75-78.
[5] Li W X, Li X, Feng J R, et al. Discuss on method to solve problem of pole or tower coordinates of power transmission line based on earth coordinate system[J]. Guangxi Electric Power, 2007(4):75-78.
[6] 高成发. GPS事后相位差分坐标解算模型及其相关问题的研究[J]. 测绘学报, 2006, 35(2):148.
[6] Gao C F. Research on coordinate solution model of GPS post difference and correlated problems[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(2):148.
[7] 杜双育, 杨强, 黄勇, 等. 输电线路杆塔坐标校验研究及应用[J]. 广东电力, 2014, 27(12):102-107.
[7] Du S Y, Yang Q, Huang Y, et al. Research and application of check on power transmission tower coordinate[J]. Guangdong Electric Power, 2014, 27(12):102-107.
[8] 翁永玲, 范兴旺, 胡伍生, 等. 多源遥感数据及GIS技术在输电线路径优选中的应用研究[J]. 东南大学学报(自然科学版), 2013(s2):269-274.
[8] Weng Y L, Fan X W, Hu W S, et al. Application of multisensor image and GIS in electric transmission line path design[J]. Journal of Southeast University (Natural Science Edition), 2013(s2):269-274.
[9] 吕雅婧, 滕玲, 邢亚, 等. 北斗卫星导航系统在电力行业的应用现状[J]. 电力信息与通信技术, 2019, 17(8):70-74.
[9] Lu Y J, Teng L, Xing Y, et al. Application status of Beidou satellite navigation system in power industry[J]. Electric Power Information and Communication Technology, 2019, 17(8):70-74.
[10] 穆晓辰, 周学坤, 王常欣, 等. 基于北斗及GPS双系统的电力杆塔滑移监测系统研究[J]. 电力信息与通信技术, 2019, 17(6):44-50.
[10] Mu X C, Zhou X K, Wang C X, et al. Research on power tower slip monitoring system based on Beidou and GPS dual system[J]. Electric Power Information and Communication Technology, 2019, 17(6):44-50.
[11] 宋军, 赵凡, 严天峰, 等. 高精度GPS形变系统在电力杆塔监测中的应用[J]. 自动化与仪器仪表, 2014(8):63-65.
[11] Song J, Zhao F, Yan T F, et al. The application of high-precision GPS deformation monitoring system on monitor of power tower[J]. Automation & Instrumentation, 2014(8):63-65.
[12] Liang X, Hyyppa J, Kukko A, et al. The use of a mobile laser scanning system for mapping large forest plots[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(9):1504-1508.
[13] 刘洋. 机载点云电力走廊要素提取及风险计算[D]. 武汉: 武汉大学, 2018.
[13] Liu Y. Feature extraction and inspection of transmission corridor based on ALS data[D]. Wuhan: Wuhan University, 2018.
[14] 张勇. 架空输电线路障碍物巡检的无人机低空摄影测量方法研究[D]. 武汉: 武汉大学, 2017.
[14] Zhang Y. Inspection of overhead power line corridor obstacles by UAV photogrammetry[D]. Wuhan: Wuhan University, 2017.
[15] 张帆, 黄先锋, 屈孝志, 等. 基于竖直基线摄影测量的电力线测量方法[J]. 测绘通报, 2013(11):33-36.
[15] Zhang F, Huang X F, Qu X Z, et al. Power line measurement method based on vertical baseline photogrammetry[J]. Bulletin of Surveying and Mapping, 2013(11):33-36.
[16] 屈航. 基于双目系统的电力线与地物间距离的测量[D]. 重庆: 重庆交通大学, 2013.
[16] Qu H. Distance surveying between power lines and features based on binocular system[D]. Chongqing: Chongqing Jiaotong University, 2013.
[17] 骆洁艺. Google Earth在输电线路防雷中的应用[J]. 广东电力, 2010, 23(12):92-96.
[17] Luo J Y. Application of Google Earth in lightning protection of transmission lines[J]. Guangdong Electric Power, 2010, 23(12):92-96.
[18] 马御棠, 王磊, 马仪, 等. 利用Google Earth对线路杆塔坐标校正[J]. 南方电网技术, 2013(1):72-75.
[18] Ma Y T, Wang L, Ma Y, et al. The correction with Google Earth for tower coordinate of transmission line[J]. Southern Power System Technology, 2013(1):72-75.
[19] 唐东跃, 熊助国, 王金丽. Google Earth及其应用展望[J]. 地理空间信息, 2008, 6(4):110-113.
[19] Tang D Y, Xiong Z G, Wang J L. Application and outlook of Google Earth[J]. Geospatial Information, 2008, 6(4):110-113.
[20] 马御棠, 王磊, 马仪, 等. 雷电定位系统线路杆塔坐标校准方法[J]. 中国电力, 2012, 45(6):18-21.
[20] Ma Y T, Wang L, Ma Y, et al. Calibration method of transmission tower coordinates in lightning location system[J]. Electric Power, 2012, 45(6):18-21.
[21] 魏鑫. 电力勘测中卫星遥感影像技术的应用[J]. 低碳世界, 2018(1):58-59.
[21] Wei X. Application of satellite remote sensing image technology in electric power survey[J]. Low Carbon World, 2018(1):58-59.
[22] 朱志超. 关于电力勘测中卫星遥感影像技术的应用研究[J]. 通讯世界, 2018(6):172-173.
[22] Zhu Z C. Research on the application of satellite remote sensing image technology in power survey[J]. Telecom World, 2018(6):172-173.
[23] 赖余斌, 袁太平, 洪巧章, 等. 基于卫星遥感技术的电网建设全过程动态监控技术研究[J]. 绿色科技, 2018(24):187-190.
[23] Lai Y B, Yuan T P, Hong Q Z, et al. Dynamic monitoring of power grid construction process based on satellite remote sensing technology[J]. Journal of Green Science and Technology, 2018(24):187-190.
[24] 晏杨, 谢宝蓉, 李欣, 等. 基于RPC模型的星上遥感卫星影像快速正射纠正[J]. 上海航天, 2018, 35(1):110-116.
[24] Yan Y, Xie B R, Li X, et al. Fast ortho rectification of remote sensing satellite images based on RPC model[J]. Aerospace Shanghai, 2018, 35(1):110-116.
[25] 刘楚斌, 张永生, 范大昭, 等. 高分辨率三线阵卫星遥感影像的区域网平差算法与实验[J]. 测绘科学技术学报, 2015, 32(5):489-493.
[25] Liu C B, Zhang Y S, Fan D Z, et al. Block-adjustment algorithm and test for three-line-array image of high-resolution remote sensing satellite[J]. Journal of Geomatics Science and Technology, 2015, 32(5):489-493.
[26] 杨国东, 赵强, 张旭晴, 等. 基于SPOT6卫星遥感数据无控制点正射校正[J]. 测绘与空间地理信息, 2018, 41(7):1-3.
[26] Yang G D, Zhao Q, Zhang X Q, et al. Based on SPOT6 satellite remote sensing data without control point orthorectification[J]. Geomatics & Spatial Information Technology, 2018, 41(7):1-3.
[27] 王超, 吴亚文, 张伟. 基于有理函数模型的北京二号影像几何校正[J]. 中国资源综合利用, 2019, 37(1):162-165.
[27] Wang C, Wu Y W, Zhang W. Geometric correction of based on Beijing-Ⅱ image with rational function model[J]. China Resources Comprehensive Utilization, 2019, 37(1):162-165.
[28] 张过. 缺少控制点的高分辨率卫星遥感影像几何纠正[D]. 武汉: 武汉大学, 2005.
[28] Zhang G. Rectification for high resolution remote sensing image under lack of ground control points[D]. Wuhan: Wuhan University, 2005.
[29] Rufenacht D, Fredembach C, Susstrunk S. Automatic and accurate shadow detection using near-infrared information[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36(8):1672-1678.
[30] Beylkin G. Discrete radon transform[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1987, 35(2):162-172.
[31] 耿婵. 控制点布设对高分二号影像精度影响研究[J]. 测绘与空间地理信息, 2020, 43(6):144-147.
[31] Gen C. Research on influence of control points laying on precision of GF-2 image[J]. Geomatics & Spatial Information Technology. 2020, 43(6):144-147.
[32] 汪建峰, 方青. 高景一号卫星影像测绘能力分析[J]. 测绘技术装备, 2020, 22(2):10-14.
[32] Wang J F, Fang Q. Mapping capability analysis of SuperView-1 satellite image[J]. Geomatics Technology and Equipment, 2020, 22(2):10-14.
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[4] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[5] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[6] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[7] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[8] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[9] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[10] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[11] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[12] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[13] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
[14] ZHU Boqin, YAN Zhaojin, XIE Jing, LIU Hong, SONG Xiaoqing, XIANG Xiqiong. Key technology for selecting depressions as sites of FAST-type radio telescopes[J]. Remote Sensing for Natural Resources, 2023, 35(2): 80-88.
[15] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech