Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 280-285     DOI: 10.6046/zrzyyg.2021369
|
Coupling coordination analysis of urbanization and ecological environment based on nighttime light remote sensing
CHEN Hang(), LIU Hanhu(), LI Jinhao, FAN Shiling, GE Zongxu
School of Earth Sciences, Chengdu University of Technology, Chengdu 610059,China
Download: PDF(2938 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The scientific assessment of the overall status of the interactions between the urbanization and the ecological environment in Chengdu is of great significance for optimizing the pace and quality of urbanization and improving the quality of the ecological environment. This study adopted the nighttime light and Landsat remote sensing data obtained from the DMSP/OLS and the NPP/VIIRS. Based on these data, the normalized night light index (NNLI) characterizing the urbanization process and the remote sensing ecological index (RSEI) characterizing the ecological quality were constructed, respectively. Then, the two indices were combined into a coupling coordination degree model for evaluation of the coordination between the urbanization process and the ecological environment quality. The study results are shown as follows. The urbanization process in Chengdu had been accelerating from 2000 to 2018, with the NNLI increasing from 0.15 in 2000 to 0.81 in 2018. By contrast, the quality of the ecological environment was negatively affected by the urbanization process and showed a downward trend in some areas, with the RSEI decreasing from 0.63 in 2000 to 0.58 in 2018. The coupling coordination degree of urbanization and ecological environment in Chengdu was gradually improved. From 2000 to 2018, the coupling coordination state entered the stage of good coordination from imbalance. However, the overall urbanization process in Chengdu is ahead of the development of the ecological environment, which is lagging behind.

Keywords remote sensing      coupling      ecological environment      RSEI index     
ZTFLH:  TP79  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hang CHEN
Hanhu LIU
Jinhao LI
Shiling FAN
Zongxu GE
Cite this article:   
Hang CHEN,Hanhu LIU,Jinhao LI, et al. Coupling coordination analysis of urbanization and ecological environment based on nighttime light remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(4): 280-285.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021369     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/280
Fig.1  location of study area
Fig.2  Changes of NNLI of Chengdu from 2000 to 2018
年份 NNLI 最小值 最大值
2000年 0.15 0.04 0.22
2005年 0.17 0.03 0.78
2010年 0.36 0.09 0.95
2016年 0.48 0.34 0.74
2018年 0.81 0.73 0.92
Tab.1  NNLI in Chengdu from 2000 to 2018
Fig.3  Changes of RSEI in Chengdu from 2000 to 2018
区县 2000年 2005年 2010年 2016年 2018年
U E D C U E D C U E D C U E D C U E D C
中心城区 0.71 0.54 0.48 0.56 0.78 0.50 0.48 0.57 0.95 0.29 0.42 0.55 0.74 0.34 0.46 0.52 0.92 0.50 0.48 0.61
双流区 0.15 0.58 0.31 0.28 0.18 0.60 0.35 0.33 0.46 0.37 0.47 0.43 0.61 0.43 0.49 0.51 0.86 0.56 0.49 0.60
龙泉驿区 0.17 0.58 0.37 0.34 0.26 0.58 0.41 0.39 0.44 0.42 0.45 0.44 0.56 0.44 0.49 0.50 0.85 0.55 0.49 0.60
温江区 0.19 0.58 0.41 0.36 0.26 0.61 0.41 0.39 0.57 0.36 0.47 0.47 0.55 0.44 0.49 0.50 0.85 0.59 0.49 0.61
郫都区 0.22 0.61 0.41 0.38 0.21 0.63 0.38 0.37 0.58 0.36 0.47 0.48 0.56 0.41 0.49 0.50 0.86 0.58 0.49 0.61
新都区 0.19 0.59 0.41 0.37 0.24 0.62 0.42 0.40 0.61 0.39 0.48 0.50 0.58 0.37 0.48 0.49 0.86 0.57 0.49 0.61
新津县 0.13 0.62 0.37 0.33 0.11 0.62 0.34 0.31 0.41 0.40 0.48 0.44 0.52 0.41 0.49 0.48 0.83 0.56 0.49 0.60
青白江区 0.14 0.58 0.33 0.30 0.15 0.61 0.34 0.32 0.39 0.40 0.46 0.42 0.50 0.39 0.49 0.47 0.83 0.56 0.49 0.60
崇州市 0.07 0.69 0.22 0.21 0.06 0.66 0.20 0.19 0.17 0.45 0.30 0.25 0.38 0.51 0.48 0.45 0.76 0.63 0.50 0.60
都江堰市 0.07 0.70 0.24 0.23 0.07 0.64 0.21 0.20 0.17 0.45 0.31 0.26 0.37 0.52 0.48 0.45 0.75 0.62 0.50 0.59
彭州市 0.05 0.62 0.23 0.20 0.05 0.61 0.19 0.18 0.15 0.42 0.31 0.25 0.38 0.47 0.48 0.45 0.75 0.60 0.50 0.59
金堂县 0.04 0.64 0.11 0.10 0.04 0.62 0.17 0.16 0.12 0.42 0.27 0.21 0.39 0.40 0.49 0.44 0.77 0.56 0.49 0.58
大邑县 0.04 0.72 0.15 0.14 0.03 0.64 0.12 0.12 0.09 0.47 0.21 0.17 0.33 0.53 0.47 0.43 0.73 0.64 0.50 0.59
蒲江县 0.04 0.67 0.16 0.15 0.04 0.60 0.20 0.19 0.13 0.41 0.38 0.28 0.35 0.43 0.49 0.43 0.75 0.60 0.50 0.59
邛崃市 0.04 0.70 0.12 0.12 0.03 0.61 0.13 0.12 0.09 0.44 0.22 0.17 0.34 0.47 0.49 0.43 0.74 0.62 0.50 0.59
成都市 0.15 0.63 0.29 0.27 0.17 0.61 0.29 0.28 0.36 0.40 0.38 0.35 0.48 0.44 0.48 0.47 0.81 0.58 0.60 0.52
Tab.2  Coupling and coordination status in various regions of Chengdu from 2000 to 2018
[1] 秦艳丽, 时鹏, 何文虹, 等. 西安市城市化对景观格局及生态系统服务价值的影响[J]. 生态学报, 2020, 40(22): 8239-8250.
[1] Qin Y L, Shi P, He W H, et al. Influence of urbanization on landscape pattern and ecosystem service value in Xi’an City[J]. Acta Ecologica Sinica, 2020, 40(22): 8239-8250.
[2] 裴立山, 胡强光. 沈阳市城市化与水生态环境的耦合协调发展测度评估[J]. 黑龙江水利科技, 2021, 49(3): 86-88.
[2] Pei L S, Hu Q G. Measurement and evaluation of coupling and coordinated development of urbanization and water ecological environment in Shenyang City[J]. Heilongjiang Science and Technolo-gy of Water Conservancy, 2021, 49(3): 86-88.
[3] 孙立双, 韩耀辉, 谢志伟, 等. 采用夜光遥感数据提取城市建成区的邻域极值法[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1619-1625.
[3] Sun L S, Han Y H, Xie Z W, et al. Neighborhood extremum method of extracting urban built-up area using nighttime lighting data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1619-1625.
[4] 李渊, 林锋, 严泽幸. 基于Landsat遥感影像的城市化演变分析——以厦门市为例[J]. 城市建筑, 2019, 16(25): 138-142.
[4] Li Y, Lin F, Yan Z X. Analysis of urbanization evolution based on Landsat remote sensing image:A case of Xiamen[J]. Urban Architecture, 2019, 16(25): 138-142.
[5] 石水源, 谢思梅, 谢荣安. 利用遥感影像土地监测数据的城市化土地利用变化研究——以广宁县为例[J]. 测绘通报, 2018(8): 102-105.
[5] Shi S Y, Xie S M, Xie R A. A study on county-level land use change of urbanization using land monitoring data from remote sensing images: Taking Guangning County as an example[J]. Bulletin of Surveying and Mapping, 2018(8): 102-105.
[6] 徐慧敏, 胡守庚. 夜光遥感视角下的中国城市规模的时空演变[J]. 武汉大学学报(信息科学版), 2021, 46(1): 40-49.
[6] Xu H M, Hu S G. Chinese city size evolution under perspective of nighttime light remote sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 40-49.
[7] 朱惠, 张清凌, 张珊. 1992—2017年基于夜光遥感的中亚社会经济发展时空特征分析[J]. 地球信息科学学报, 2020, 22(7): 1449-1462.
doi: 10.12082/dqxxkx.2020.190808
[7] Zhu H, Zhang Q L, Zhang S. Spatial and temporal characteristics of socio-economic development in central Asia based on a series of nighttime light images from 1992 to 2017[J]. Journal of Geo-Information Science, 2020, 22(7): 1449-1462.
[8] 张亚球, 姜放, 纪梦达, 等. 基于遥感指数的区县级生态环境评价[J]. 干旱区研究, 2020, 37(6): 1598-1605.
[8] Zhang Y Q, Jiang F, Ji M D, et al. Assessment of the ecological environment at district and county level based on remote sensing index[J]. Arid Zone Research, 2020, 37(6): 1598-1605.
[9] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853-7862.
[9] Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862.
[10] 路娟, 张勇. 长江经济带城市化与生态环境耦合、协调特征及时空演化规律研究[J]. 四川师范大学学报(社会科学版), 2018, 45(4): 85-93.
[10] Lu J, Zhang Y. City urbanization along the Yangtze River economic zone, ecological environment coordination and their spatial evolution law[J]. Journal of Sichuan Normal University (Social Sciences Edition), 2018, 45(4): 85-93.
[11] 翁异静, 周祥祥, 张思哲. 新型城市化与生态环境耦合协调时空特征研究——以长江经济带为例[J]. 林业经济, 2020, 42(11): 63-74.
[11] Weng Y J, Zhou X X, Zhang S Z. Research on the coupling and coordination of new urbanization and ecological environment:A case study of the Yangtze River economic belt[J]. Forestry Economics, 2020, 42(11): 63-74.
[12] 陈晋, 卓莉, 史培军, 等. 基于DMSP/OLS数据的中国城市化过程研究——反映区域城市化水平的灯光指数的构建[J]. 遥感学报, 2003, 7(3),168-175.
[12] Chen J, Zhuo L, Shi P J, et al. The study on urbanization process in China based on DMSP/OLS data: Development of a light index for urbanization level estimation[J]. Journal of Remote Sensing, 2003, 7(3), 168-175.
[13] 刘智才, 徐涵秋, 李乐, 等. 基于遥感生态指数的杭州市城市生态变化[J]. 应用基础与工程科学学报, 2015, 23(4): 728-739.
[13] Liu Z C, Xu H Q, Li L, et al. Ecological change in the Hangzhou area using the remote sensing based ecological index[J]. Journal of Basic Science and Engineering, 2015, 23(4): 728-739.
[14] 廖李红, 戴文远, 黄华富, 等. 基于DMSP/OLS和Landsat数据的城市化与生态环境耦合协调分析[J]. 福建师范大学学报(自然科学版), 2018, 34(6): 94-103.
[14] Liao L H, Dai W Y, Huang H F, et al. Coupling coordination analysis of urbanization and eco-environment system in Jinjiang using Landsat series data and DMSP/OLS nighttime light data[J]. Journal of Fujian Normal University (Natural Science Edition), 2018, 34(6): 94-103.
[15] 王少剑, 方创琳, 王洋. 京津冀地区城市化与生态环境交互耦合关系定量测度[J]. 生态学报, 2015, 35(7): 2244-2254.
[15] Wang S J, Fang C L, Wang Y. Quantitative investigation of the interactive coupling relationship between urbanization and eco-environment[J]. Acta Ecologica Sinica, 2015, 35(7): 2244-2254.
[16] 马廷. 夜光遥感大数据视角下的中国城市化时空特征[J]. 地球信息科学学报, 2019, 21(1): 59-67.
doi: 10.12082/dqxxkx.2019.180361
[16] Ma T. Spatiotemporal characteristics of urbanization in China from the perspective of remotely sensed big data of nighttime light[J]. Journal of Geo-Information Science, 2019, 21(1): 59-67.
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[4] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[5] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[6] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[7] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[8] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[9] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[10] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[11] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[12] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[13] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
[14] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[15] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech