Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 148-154     DOI: 10.6046/zrzyyg.2022056
|
Remote sensing-based information extraction of the geological landscape in the Zhada earth forest distribution area
YE Qiang1(), WANG Hong2, YANG Zhaoying3, JIANG Xiao3(), NYIMA Ciren1, LU Wenjia3
1. Xizang Institute of Geological Survey, Lhasa 850000, China
2. Information Center of Ministry of Natural Resources, Beijing 100036, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(6965 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Zhada earth forest, located in Zhada and Pulan Counties, Tibet, is composed primarily of weakly consolidated to semi-consolidated clastics s of the Tuolin and Xiangzi formations. This area forms a unique geological landscape consisting of peaks and ravines due to the long-term erosion by rivers and rain. To further explore the tourism resources in the Zhada earth forest distribution area and fully reveal the scientific and aesthetic values of the study area, this study carried out the geological interpretation of the study area mainly based on the GF-1 satellite remote sensing images, with the interpretation focusing on the Xiangzi and Tuolin formations constituting the earth forest landscape, as well as ophiolites and tectonic melanges reflecting plate subduction. Based on the interpretation results and the 3D interpretation environment of the Aerial Geophysical Remote Sensing Multivariate Data Processing and Product Display Platform, this study extracted information on typical geological landscapes in the study area, including earth forests, various rocks, and fault structures. The remote sensing technology helped delineate the distribution range of the earth forest more accurately. The 3D display platform enabled the more vivid display of the geological relics that represented the dramatic changes in the regional evolution history, such as earth forests, oceanic crust remnants, and unconformities. The application of modern information technology can provide strong support for the landscape planning of the Zhada Earth Forest National Geopark.

Keywords Zhada earth forest      geological landscape      remote sensing     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang YE
Hong WANG
Zhaoying YANG
Xiao JIANG
Ciren NYIMA
Wenjia LU
Cite this article:   
Qiang YE,Hong WANG,Zhaoying YANG, et al. Remote sensing-based information extraction of the geological landscape in the Zhada earth forest distribution area[J]. Remote Sensing for Natural Resources, 2023, 35(1): 148-154.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022056     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/148
Fig.1  Location of study area
Fig.2  Technical flowchart of interpreting
序号 要素 描述 解译标志 示例图
1 区域性深大断裂 呈NW-SE向展布 区域性深大断裂构造形迹明显,呈线性分布,连贯性好,其两侧的岩体具有明显的错动,或地貌发生较大的变化。两侧发育一系列NW向展布的蛇绿岩、构造混杂岩
2 一般性断裂 以NW向和NE向为主 一般性断裂控制主要河流的延伸方向,可根据两侧岩石错动或地表的线性形迹加以识别
3 香孜组地层 褐黄-褐灰色第四系未固结-弱固结的砾岩夹砂岩,覆盖于托林组地层之上 呈灰-灰黄色调,纹理较为光滑细腻,发育较多冲沟,冲沟中可见下部的托林组地层。香孜组展现的浑圆状的山体,与托林组尖棱状山脊具有明显的差异
4 托林组一段 下部为灰色厚层砾岩夹砂岩透镜体; 中部为褐黄色含砾粗砂岩、中粗粒砂岩夹细砾岩; 上部为厚层砾岩 托林组一段一般风化程度较强,在遥感影像上,呈深灰黄色,大多形成较缓的斜坡,纹理细腻,局部层理发育
5 托林组二段 黄绿色、灰色中-厚层含砾粗砂岩、泥质粉砂岩夹粉砂质泥岩 遥感影像上,托林组二段呈灰黄色,局部发白,受流水切割明显,多呈棱角状山体,羽状冲沟非常发育
6 托林组三段 青灰色-土黄色中-巨厚层泥岩和泥质粉砂岩,水平层理发育 呈灰白色,局部为灰褐色,多为棱角状山体,具有典型的密集羽状冲沟,裂隙比较发育
7 蛇绿岩 岩性主要为: 变质的辉长岩、橄榄岩、辉石岩、玄武岩等基性岩石 遥感影像上一般为灰黑色、黑色或褐红色,一般呈块状分布,整体上形成NW-SE向展布的岩带
8 构造混杂岩 一般为蛇绿岩与其他构造块体的混合岩石组合,主体为镁铁质-超镁铁质岩构成 遥感影像上呈深黑色、灰色等,一般可见一些浅色斑块
Tab.1  Statistical table of interpretation sign
Fig.3  Remote sensing geological interpretation map of study area
Fig.4  The landscape of faults
Fig.5  The landscape of ophiolites and tectonic melange
Fig.6  The landscape of Lithologic boundaries
Fig.7  Three-dimensional remote sensing interpretation map of earth-forest landform
Fig.8  The earth-forest of Zhada World Geopark planning proposal
[1] 罗鹏辉, 张世涛, 田宜敏, 等. 土林地貌分类研究[J]. 地球学报, 2020, 41(4):575-582.
[1] Luo P H, Zhang S T, Tian Y M, et al. The geomorphologic classification of earth forest landform[J]. Acta Geoscientica Sinica, 2020, 41(4):575-582.
[2] May F E, Traverse A. Palynology of the Dakota sandstone (middle cretaceous)near Bryce Canyon National Park,Southern Utah[J]. Geoscience and Man, 1973, 7(1):57-64.
doi: 10.1080/00721395.1973.9989733 url: http://www.tandfonline.com/doi/abs/10.1080/00721395.1973.9989733
[3] Hermelin M. La Playa badlands and their earth pillars[C]// Springer International Publishing, 2016.
[4] 孟宪刚, 朱大岗, 邵昭刚, 等. 一种新的地质地貌景观类型——西藏札达盆地古格地貌的特征与成因初探[J]. 地质通报, 2006, 25(1-2):295-301.
[4] Meng X G, Zhu D G, Shao Z G, et al. A new type of geological-geomorphological landscape:Discussion of the Guge forest geomorphological features and its origin in the Zanda Basin,Ngari,Tibet,China[J]. Geological Bulletin of China, 2006, 25(1-2): 295-301.
[5] 赵学艺. 大同土林景区主要自然景物——土林形成发展过程及安全保护[J]. 干旱资源与环境, 2012, 26(7):195-200.
[5] Zhao X Y. Analysis on the development course of the earth-forest in Datong and its protection[J]. Journal of the Arid Land Resources and Environment, 2012, 26(7):195-200.
[6] 钱方, 凌小惠. 元谋土林成因及类型的初步研究[J]. 中国科学(B辑), 1989(4):412-418.
[6] Qian F, Ling X H. A preliminary study on genetics and type for earth forest in Yuanmou basin Yuannan Province,China[J]. Science in China(series B), 1989(4):412-418.
[7] 王小群, 魏玉峰. 西昌黄联土林的成因初探[J]. 水土保持研究, 2007, 14(1):218-220.
[7] Wang X Q, Wei Y F. The Preliminary analysis on formation mechanism of the earth forest of Xichang-Huanglian[J]. Research of Soil and Water Conservation, 2007, 14(1):218-220.
[8] 陈述云, 张建云. 元谋土林的形成条件及发育速率[J]. 云南地质, 1994, 13(4):383-391.
[8] Chen S Y, Zhang J Y. Formation conditions and development rate of earth forest of Yuanmou[J]. Yunnan Geology, 1994, 13(4):383-391.
[9] 侯利锋, 刘建兵. 西藏札达土林地貌形成条件及演化过程[J]. 西部探矿工程, 2017, 2:65-68.
[9] Hou L F, Liu J B. Forming condition and evolution process of earth forest landform in Zanda of Tibet[J]. West-China Exploration Engineering, 2017, 2:65-68.
[10] 朱仁鹏, 石晨霞. 对西藏札达土林国家地质公园旅游业发展的思考[J]. 安徽农业科学, 2011, 39(13):7900-7901,7922.
[10] Zhu R P, Shi C X. Reflection on tourism development of Tibet Zhada Turin National Geopark[J]. Journal of Anhui Agricultural Sciences, 2011, 39(13):7900-7901,7922.
[11] 王行军, 王根厚, 李广栋, 等. 西藏西部札达县东北部帮果日-波库蛇绿岩带的发现及其地质意义[J]. 中国地质, 2013, 40(6):1749-1761.
[11] Wang X J, Wang G H, Li G D, et al. The discovery of Banguori-Boku ophiolite belt in northeastern Zanda County of west Tibet and its geological significance[J]. Geology in China, 2013, 40(6):1749-1761.
[12] 古格其美多吉, 索朗仁青.西藏阿里地区生态旅游区划及分区开发策略[J]. 西藏研究, 2011, 5:99-107.
[12] Guge Q M D J, Suolang R Q. The categories,planning and development of ecological tourist resources in Ngari area in Tibet[J]. Tibetan Studies, 2011, 5:99-107.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[6] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[7] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
[10] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[11] WANG Haiwen, JIA Junqing, LI Beichen, DONG Yongping, HA Sier. Assessing intensive urban land use based on remote sensing images and industry survey data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 149-156.
[12] LI Hemou, BAI Juan, GAN Fuping, LI Xianqing, WANG Zekun. River discharge estimation based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 16-24.
[13] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[14] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[15] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech