Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 169-177     DOI: 10.6046/zrzyyg.2022347
|
Spatio-temporal differentiation of vegetation net primary productivity in Henan Province as well as its driving factors
ZHI Lu1,2(), HU Tao2, ZOU Bin3(), LI Haosheng1, ZHAO Yongqiang1
1. School of Geography and Tourism, Zhengzhou Normal University, Zhengzhou 450000, China
2. School of Data and Target Engineering, Information Engineering University, Zhengzhou 450000, China
3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Download: PDF(3872 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The net primary productivity (NPP) of vegetation, exhibiting regional differentiation, serves as a crucial parameter for determining the carbon source/sink of ecosystems. Based on the MOD17A3HGF, topography, and human activity data, this study delved into the spatio-temporal differentiation of vegetation NPP in Henan Province from 2010 to 2020 and its response to driving factors using methods like the gravity center model, trend analysis, and the geographical detector model. Moreover, it revealed the explanatory power and interactions of the driving factors. The results are as follows: ① Temporally, the vegetation NPP from 2010 to 2020 displayed a slightly fluctuating upward trend, averaging 424.89 gC·m-2·a-1. Its gravity center exhibited significant temporal differentiation, with the average center of gravity closer to the geometric center. ② Spatially, the vegetation NPP values increased from the northeast to the southwest and were dominated by median values (300~600 gC·m-2·a-1). ③ In terms of influencing factors, the vegetation NPP showed a higher correlation with precipitation compared to temperature. Moreover, it first increased and then decreased with an increase in altitude and slope. The areas with altitudes below 200 m and slopes less than 2° contributed the most to NPP in the study area. The vegetation NPP on sunny slopes was higher than that on shady slopes. In the case of land use changes, the shift to arable land plays a significant role in the increase of total NPP. ④ The geographical detection results indicate that precipitation exhibited the highest explanatory power for changes in vegetation NPP. The two-factor interactions all showed an enhanced relationship, with the q value of precipitation ∩ longitude being the highest. These findings provide data support for ecological protection and high-quality development of Henan Province.

Keywords Henan Province      vegetation NPP      spatio-temporal differentiation      driving factor     
ZTFLH:  TP79  
  P237  
  TP751  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu ZHI
Tao HU
Bin ZOU
Haosheng LI
Yongqiang ZHAO
Cite this article:   
Lu ZHI,Tao HU,Bin ZOU, et al. Spatio-temporal differentiation of vegetation net primary productivity in Henan Province as well as its driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(4): 169-177.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022347     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/169
Fig.1  An overview of the study area
Fig.2  Interannual change and migration trajectory of the gravity center of vegetal NPP in Henan Province from 2010 to 2020
Fig.3  Spatial distribution, trend and significance of vegetal NPP in Henan Province from 2010 to 2020
Fig.4  Effects of temperature and precipitation on vegetal NPP
Fig.5  Effects of altitude, slope, longitude, latitude and aspect on vegetal NPP
土地利用类型 2020年
草地 耕地 建设用地 林地 水体 未利用地
2010年 草地 4 778.26 2 613.94 294.94 1 463.61 176.47 3.01
耕地 2 517.39 84 969.53 14 761.09 3 125.18 1 925.60 3.03
建设用地 102.36 11 157.82 6 364.10 104.05 217.82 0.01
林地 1 403.01 2 613.45 293.78 22 180.36 286.32 11.99
水体 129.26 1 656.64 309.49 231.52 1 723.97 0.00
未利用地 2.00 35.04 2.99 10.97 6.01 2.97
Tab.1  Transition matrix of land use types in Henan Province from 2010 to 2020 (km2)
土地利用类型 2020年
草地 耕地 建设用地 林地 水体 未利用地
2010年 草地 202.52 18.77 124.45 5.71 0.36
耕地 201.81 775.08 208.28 87.71 0.20
建设用地 7.37 671.80 7.28 9.73 0
林地 115.91 183.91 16.51 14.78 1.00
水体 8.71 93.64 13.24 12.13 0
未利用地 0.14 3.10 0.30 1.02 0.22
Tab.2  Change of vegetal NPP under different transition matrix in Henan Province from 2010 to 2020 (kgC·m-2·a-1)
因子 海拔∩降水 海拔∩纬度 降水∩坡向 降水∩气温 降水∩土地利用 降水∩经度 经度∩纬度
q 0.728 0.685 0.781 0.682 0.740 0.804 0.699
Tab.3  Detection results of interaction for different driving factors
[1] Yan M, Xue M, Zhang L, et al. A decade’s change in vegetation productivity and its response to climate change over northeast China[J]. Plants, 2021, 10(5):821.
doi: 10.3390/plants10050821 url: https://www.mdpi.com/2223-7747/10/5/821
[2] Li F, Meng J, Zhu L K, et al. Spatial pattern and temporal trend of land degradation in the Heihe River basin of China using local net primary production scaling[J]. Land Degradation and Development, 2020, 31(4):518-530.
doi: 10.1002/ldr.v31.4 url: https://onlinelibrary.wiley.com/toc/1099145x/31/4
[3] Wang H, Liu G H, Li Z S, et al. Assessing the driving forces in vegetation dynamics using net primary productivity as the indicator:A case study in Jinghe River basin in the Loess Plateau[J]. Forests, 2018, 9(7):374.
doi: 10.3390/f9070374 url: http://www.mdpi.com/1999-4907/9/7/374
[4] 田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5):938-948.
doi: 10.16258/j.cnki.1674-5906.2021.05.006
[4] Tian Y C, Yang T, Xu X. Temporal and spatial distribution characteristics and influencing factors of net primary productivity of vegetation in typical basin entering the sea Beibu gulf[J]. Ecology and Environmental Sciences, 2021, 30(5):938-948.
[5] 孙庆龄, 李宝林, 李飞, 等. 三江源植被净初级生产力估算研究进展[J]. 地理学报, 2016, 71(9):1596-1612.
doi: 10.11821/dlxb201609011
[5] Sun Q L, Li B L, Li F, et al. Review on the estimation of net primary productivity of vegetation in the Three-River Headwater region,China[J]. Acta Geographica Sinica, 2016, 71(9):1596-1612.
[6] 徐雨晴, 肖风劲, 於琍. 中国森林生态系统净初级生产力时空分布及其对气候变化的响应研究综述[J]. 生态学报, 2020, 40(14):4710-4723.
[6] Xu Y Q, Xiao F J, Yu L. Review of spatio-temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China[J]. Acta Ecologica Sinica, 2020, 40(14):4710-4723.
[7] Han H Z, Bai J J, Ma G, et al. Seasonal responses of net primary productivity of vegetation to phenological dynamics in the Loess Plateau,China[J]. Chinese Geographical Science, 2022, 32(2):340-357.
doi: 10.1007/s11769-022-1270-8
[8] Guan X B, Shen H F, Li X H, et al. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity[J]. Science of the Total Environment, 2019, 669:342-352.
doi: 10.1016/j.scitotenv.2019.02.361 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969719308691
[9] 刘婵, 刘冰, 赵文智, 等. 中亚地区植被净初级生产力时空动态及其与气候因子关系[J]. 遥感技术与应用, 2020, 35(4):924-933.
[9] Liu C, Liu B, Zhao W Z, et al. Temporal-spatial variation analysis of net primary productivity and its relationship with climate in central Asia[J]. Remote Sensing Technology and Application, 2020, 35(4):924-933.
[10] 茆杨, 蒋勇军, 张彩云, 等. 近20年来西南地区植被净初级生产力时空变化与影响因素及其对生态工程响应[J]. 生态学报, 2022, 42(7):2878-2890.
[10] Mao Y, Jiang Y J, Zhang C Y, et al. Spatio-temporal changes and influencing factors of vegetation net primary productivity in southwest China in the past 20 years and its response to ecological engineering[J]. Acta Ecologica Sinica, 2022, 42(7):2878-2890.
[11] 朱思佳, 冯徽徽, 邹滨, 等. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34 (3):196-206.doi:10.6046/zrzyyg.2021283.
[11] Zhu S J, Feng H H, Zou B, et al. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors[J]. Remote Sensing for Natural Resources, 2022, 34(3):196-206.doi:10.6046/zrzyyg.2021283.
[12] 冯婉, 谢世友. 长江流域片2000—2015年植被NPP时空特征及影响因子探测[J]. 水土保持研究, 2022, 29(1):176-183.
[12] Feng W, Xie S Y. Spatiotemporal characteristics and influencing factors of vegetation NPP in the Yangtze River basin from 2000 to 2015[J]. Research of Soil and Water Conservation, 2022, 29(1):176-183.
[13] 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15):5306-5317.
[13] Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15):5306-5317.
[14] 宋晓森, 杨朝兴. 基于习近平生态文明思想建设生态强省的路径探讨[J]. 中州学刊, 2022(7):90-94.
[14] Song X S, Yang C X. Research on the path for building a strong eco-province based on Xi Jinping’s concept of ecological civilization[J]. Academic Journal of Zhongzhou, 2022(7):90-94.
[15] 李军玲, 陈怀亮, 邹春辉, 等. 1994—2008年河南省植被净第一性生产力及其时空变化[J]. 生态环境学报, 2011, 20(10):1424-1429.
doi: 10.16258/j.cnki.1674-5906(2011)10-1424-06
[15] Li J L, Chen H L, Zou C H, et al. Vegetation net primary productivity and its temporal-spatial changes in Henan Province during 1994—2008[J]. Ecology and Environmental Sciences, 2011, 20(10):1424-1429.
[16] 王新闯, 王世东, 张合兵. 基于MOD17A3的河南省NPP时空格局[J]. 生态学杂志, 2013, 32(10):2797-2805.
[16] Wang X C, Wang S D, Zhang H B. Spatiotemporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3[J]. Chinese Journal of Ecology, 2013, 32(10):2797-2805.
[17] 刘忠阳, 李梦夏, 李军玲, 等. 河南省植被净初级生产力变化特征及其对气候变化的响应[J]. 河南农业大学学报, 2021, 55(1):141-151,163.
[17] Liu Z Y, Li M X, Li J L, et al. Spatial-temporal changes of vegetation net primary productivity and its response to climate change in Henan Province[J]. Journal of Henan Agricultural University, 2021, 55(1):141-151,163.
[18] Ge W Y, Deng L Q, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773:145648.
doi: 10.1016/j.scitotenv.2021.145648 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969721007166
[19] 左丽媛, 高江波. 基于地理探测器的喀斯特植被NPP定量归因[J]. 生态环境学报, 2020, 29(4):686-694.
doi: 10.16258/j.cnki.1674-5906.2020.04.006
[19] Zuo L Y, Gao J B. Quantitative attribution analysis of NPP in Karst peak cluster depression based on geographical detector[J]. Ecology and Environmental Sciences, 2020, 29(4):686-694.
[20] Libiseller C, Grimvall A. Performance of partial Mann-Kendall tests for trend detection in the presence of covariates[J]. Environmetrics, 2002, 13(1):71-84.
doi: 10.1002/env.v13:1 url: https://onlinelibrary.wiley.com/toc/1099095x/13/1
[21] 梁龙武, 先乐, 陈明星. 改革开放以来中国区域人口与经济重心演进态势及其影响因素[J]. 经济地理, 2022, 42(2):93-103.
[21] Liang L W, Xian Y, Chen M X. Evolution trend and influencing factors of regional population and economy gravity center in China since the reform and opening-up[J]. Economic Geography, 2022, 42(2):93-103.
[22] 肖东洋, 牛海鹏, 闫弘轩, 等. 1990—2018年黄河流域(河南段)土地利用格局时空演变[J]. 农业工程学报, 2020, 36(15):271-281,326.
[22] Xiao D Y, Niu H P, Yan H X, et al. Spatiotemperal evolution of land use pattern in the Yellow River basin (Henan section) from 1990 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15):271-281,326.
[23] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
[23] Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
[24] 河南省统计局. 2013年河南统计年鉴[EB/OL].(2019-12-31) [2022-06-05]. https://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2013/indexch.htm.
url: https://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2013/indexch.htm
[24] Henan Province Bureau of Statistics. 2013 Henan statistical yearbook[EB/OL].(2019-12-31) [2022-06-05]. https://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2013/indexch.htm.
url: https://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2013/indexch.htm
[25] 2019年河南十大天气气候事件公布[EB/OL].(2020-01-03) [2022-07-06]. https://www.henan.gov.cn/2014/01-01/335400.html.
url: https://www.henan.gov.cn/2014/01-01/335400.html
[25] The announcement of the top ten weather and climate events in Henan in 2019[EB/OL].(2020-01-03) [2022-07-06]. https://www.henan.gov.cn/2014/01-01/335400.html.
url: https://www.henan.gov.cn/2014/01-01/335400.html
[26] 陈阳. 河南省植被NPP与水文气象要素的时空变化及其响应关系[D]. 郑州: 华北水利水电大学, 2021.
[26] Chen Y. Temporal and spatial changes of vegetation NPP and hydrological and meteorological in Henan Province and their response relationship[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
[27] 王莉娜, 宋伟宏, 张金龙, 等. 祁连山国家公园植被净初级生产力时空演变及驱动因素分析[J]. 草业科学, 2020, 37(8):1458-1474.
[27] Wang L N, Song W H, Zhang J L, et al. Spatio-temporal evolution of vegetation net primary productivity in Qilian Mountain National Park and its driving factors[J]. Pratacultural Science, 2020, 37(8):1458-1474.
[28] 郭灵辉, 高江波, 邹友峰. 21世纪以来河南省植被覆盖变化及气候驱动解析[J]. 中国农业大学学报, 2019, 24(5):161-173.
[28] Guo L H, Gao J B, Zou Y F. Analysis on the vegetation cover change in Henan Province of China since the 21st century and its climatic driving[J]. Journal of China Agricultural University, 2019, 24(5):161-173.
[1] LIU Xiaomin, AMUGULENG , YANG Yaotian, LIU Yong. Ecological security evaluation of counties/banners in the Yellow River basin in Ordos[J]. Remote Sensing for Natural Resources, 2023, 35(4): 139-148.
[2] CUI Dunyue, WANG Shidong, ZHANG Xuejun. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4): 214-225.
[3] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[4] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[5] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[6] WANG Juan, WANG Zhihong, ZHANG Jianguo, CHU Na, LI Si, YIN Zhan. Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 235-242.
[7] LIN Xuemin, LI Weifeng, WANG Hong, MING Dongping, HAN Lijian. Analysis of the groundwater storage variations and their driving factors in the three eastern coastal urban agglomerations of China[J]. Remote Sensing for Natural Resources, 2022, 34(4): 262-271.
[8] ZHU Sijia, FENG Huihui, ZOU Bin, YE Shuchao. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors[J]. Remote Sensing for Natural Resources, 2022, 34(3): 196-206.
[9] LI Jingzhi, WANG Miao, FENG Wenjing, LI Bin. The characteristics and driving factors of spatiotemporal changes in the ecosystem service value in Xiangxi, Hunan, China[J]. Remote Sensing for Natural Resources, 2022, 34(3): 207-217.
[10] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[11] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[12] Zhaohua LIU, Chunyan ZHANG. Dynamic monitoring and driving factors analysis of urban expansion in Kaifeng[J]. Remote Sensing for Land & Resources, 2018, 30(4): 193-199.
[13] Junxia WANG, Xiufang ZHU, Xianfeng LIU, Yaozhong PAN. Research on agriculture drought monitoring method of Henan Province with multi-sources data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 180-186.
[14] LV Ning, GAO Yang, DENG Yu-Jiao, XUE Chong-Sheng. A STUDY OF URBAN SPATIAL STRUCTURAL DYNAMIC CHANGES OF YIWU CITY
IN ZHEJIANG PROVINCE BASED ON REMOTE SENSING MONITORING
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 65-68.
[15] YANG Rui-xia, GUO Yang-shan, ZHAN Zhi-ming, WANG Chao. APPLICATION OF REMOTE SENSING TECHNIQUES IN ARCHAEOLOGICAL PROCESS, HENAN PROVINCE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(2): 19-24,64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech