|
|
|
|
|
|
Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints |
CHEN Jing1,2( ), CHEN Jingbo1, MENG Yu1, DENG Yupeng1,2, JIE Yongshi1,2, ZHANG Yi1,2 |
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China 2. School of Electronic,Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101400, China |
|
|
Abstract The distribution of wind farms is an important basis for the monitoring and early warning of wind power investment, the analyses of land occupation, and the assessment of clean energy consumption capacity. Remote sensing technology serves as an effective method for extracting wind farm distribution on a large scale. As the remote sensing interpretation marks of wind farms, wind turbine towers are a kind of multi-scale targets in high-resolution images. However, their characteristics greatly differ due to the effects of image acquisition time, illumination conditions, and surface coverage. Therefore, it's difficult to automatically detect wind turbine towers in remote sensing images. Aiming at the above problems, this paper proposed an automatic detection method of wind turbine towers based on the YOLOv3 model, and the steps are as follows. Firstly, determine the sample construction conditions and the target scale of wind turbine towers according to the analyses of the remote sensing characteristics of a wind farm. Secondly, optimize the depth of the feature extraction network of the YOLOv3 model to improve the characterization capacity of multi-scale targets. Finally, suppress false detections using the DBSCAN density clustering algorithm according to the density difference between noise and wind turbine towers. The experimental results show that the proposed method exhibits superiority over the benchmark models such as Faster R-CNN and FPN. With a detection accuracy rate of 96%, a recall rate of 94%, and F1 of 95%, the proposed method has good effects for the detection of small targets in the remote sensing images with complex background.
|
Keywords
object detection
YOLOv3
DBSCAN
wind turbine tower
remote sensing
|
|
Issue Date: 24 September 2021
|
|
|
[1] |
Chen J B, Yue A Z, Wang C Y, et al. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection[J]. Journal of Applied Remote Sensing, 2018, 12(1):016041-016041.
|
[2] |
于野, 艾华, 贺小军, 等. A-FPN算法及其在遥感图像船舶检测中的应用[J]. 遥感学报, 2020, 24(2):107-115.
|
[2] |
Yu Y, Ai H, He X J, et al. Attention-based feature pyramid networks for ship detection of optical remote sensing image[J]. Journal of Remote Sensing, 24(2):107-115.
|
[3] |
董彪, 熊风光, 韩燮, 等. 基于改进Yolo v3算法的遥感建筑物检测研究[J]. 计算机工程与应用, 2020, 56(18):209-213.
|
[3] |
Dong B, Xiong F G, Han X, et al. Research on remote sensing building detection based on improved Yolo v3 algorithm[J]. Computer Engineering and Applications, 2020, 56(18):209-213.
|
[4] |
赵文博. 基于卷积神经网络的风力发电站遥感检测及其空间分布研究[D]. 广州:华南师范大学, 2019.
|
[4] |
Zhao W B. Detection and spatial distribution of wind turbine based on convolutional neural network[D]. Guangzhou:South China Normal University, 2019.
|
[5] |
Redmon J, Farhadi A. YOLOv3:An incremental improvement[J]. arXiv,2018:arXiv:1804.02767.
|
[6] |
张鹏. 基于卷积神经网络的光学遥感图像中机场目标识别研究[D]. 北京:国防科学技术大学, 2016.
|
[6] |
Zhang P. Airport detection in optical remote sensing images with convolution neural network[D]. Beijing:National University of Defense Technology, 2016.
|
[7] |
韩志华. 基于统计特征与桥梁方法的小目标检测算法研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2019.
|
[7] |
Han Z H. Research on small target detection algorithm based on statistical features and bridge method[D]. Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, 2019.
|
[8] |
Barret Z, Ekin D C, Golnaz G, et al. Learning data augmentation strategies for object detection:America,US2019354817[P]. 2019-11-21.
|
[9] |
张翠, 邹涛, 王正志. 一种高分辨率SAR图像快速目标检测算法[J]. 遥感学报, 2005, 9(1):45-49.
|
[9] |
Zhang C, Zou T, Wang Z Z. A fast target detection algorithm for high resolution SAR imagery[J]. Journal of Remote Sensing, 2005, 9(1):45-49.
|
[10] |
张荫华, 杨萌. SAR图像舰船目标检测的信息几何方法[J]. 中国图象图形学报, 2020, 25(1):206-213.doi: 10.11834/jig.190131.
doi: 10.11834/jig.190131
|
[10] |
Zhang Y H, Yang M. Information geometry method for ship detection in SAR images[J]. Journal of Image and Graphics, 2020, 25(1):206-213.doi: 10.11834/jig.190131.
doi: 10.11834/jig.190131
|
[11] |
谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
|
[11] |
Xie Q F, Yao G Q, Zhang M. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
|
[12] |
郑志强, 刘妍妍, 潘长城, 等. 改进YOLOV3遥感图像飞机识别应用[J]. 电光与控制, 2019, 26(4):28-32.doi: 10.3969/j.issn.1671-637X.2019.04.006.
doi: 10.3969/j.issn.1671-637X.2019.04.006
|
[12] |
Zhang Z Q, Liu Y Y, Pan C C, et al. Application of improved YOLO V3 in aircraft recognition of remote sensing images[J]. Electronics Optics and Control, 2019, 26(4):28-32.doi: 10.3969/j.issn.1671-637X.2019.04.006.
doi: 10.3969/j.issn.1671-637X.2019.04.006
|
[13] |
谌华. SAR图像目标自动检测与识别方法研究[D]. 北京:中国科学院国家空间科学中心, 2019.
|
[13] |
Chen H. A study on methods of SAR image target automatic detection and recognition[D]. Beijing:National Space Science Center,Chinese Academy of Sciences, 2019.
|
[14] |
吴柳青. 基于多尺度多特征融合的遥感影像建筑物自动提取[D]. 武汉:武汉大学, 2018.
|
[14] |
Wu L Q. Automatic building extraction of remote sensing images based on fused multi-scale and multi-feature[D]. Wuhan:Wuhan University, 2018.
|
[15] |
申原. 基于深度学习的遥感影像目标检测算法研究[D]. 深圳:中国科学院深圳先进技术研究院, 2020.
|
[15] |
Shen Y. Research on object detection algorithm of remote sensing images based on deep learning[D]. Shenzhen:Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 2020.
|
[16] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
url: http://ieeexplore.ieee.org/document/7485869/
|
[17] |
Xie Y, Cai J, Bhojwani R, et al. A locally-constrained YOLO framework for detecting small and densely-distributed building footprints[J]. International Journal of Geographical Information Science, 2020, 34(4):777-801.
doi: 10.1080/13658816.2019.1624761
url: https://www.tandfonline.com/doi/full/10.1080/13658816.2019.1624761
|
[18] |
Wu Z, Chen X, Gao Y, et al. Rapid target detection in high resolution remote sensing images using YOLO model[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2018, 42:3.
|
[19] |
陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3):413-424.doi: 10.12000/JR19041.
doi: 10.12000/JR19041
|
[19] |
Chen H Y, Liu Z Y, Guo W W, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3):413-424.doi: 10.12000/JR19041.
doi: 10.12000/JR19041
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|