Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 184-193     DOI: 10.6046/zrzyyg.2024156
|
Spatiotemporal changes in land use and their driving factors in the Golmud River basin from 1980 to 2020
MA Maonan1,2(), CHANG Liang1, YU Guoqiang1(), ZHOU Jianwei3, HAN Haihui1, ZHANG Qunhui1, CHEN Xiaoyan1, DU Chao4
1. Xi’an Center, China Geological Survey, Xi’an 710119, China
2. Institute of Geological Survey, China University of Geosciences (Wuhan), Wuhan 430074, China
3. School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
4. Geological Survey Academy of Inner Mongolia Autonomous Region, Hohhot 010020, China
Download: PDF(6217 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Land use serves as the primary cause of global environmental changes. Therefore, investigating its spatiotemporal changes and corresponding driving factors is significant for promoting the sustainable development of regional socioeconomics and ecosystems. Based on nine stages of remote sensing monitoring data on land use/land cover from 1980 to 2020, this study analyzed the spatiotemporal changes in land use types in the Golmud River basin. By combining the analysis of significant correlations, this study explored the major factors driving changes in land use within the basin. The results indicate that over the past 40 years, unused land and grassland proved to be dominant land use types in the Golmud River basin. The areas of cultivated lands, water bodies, and construction lands exhibited an increasing trend, while those of forest lands, grasslands, and unused lands trended downward. The period from 2015 to 2020 witnessed significant changes in both the areas and the dynamic degrees of various land use types within the basin. During this period, spatial changes in land use transition predominately occurred in the central and northern parts of the basin. Between 1980 and 2020, the unused land showed significant fragmentation. Human activities, particularly total population and regional gross domestic product, were identified as the main factors driving changes in the land use type within the basin.

Keywords land use      spatiotemporal change      driving factor      correlation analysis      Golmud River basin     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Maonan MA
Liang CHANG
Guoqiang YU
Jianwei ZHOU
Haihui HAN
Qunhui ZHANG
Xiaoyan CHEN
Chao DU
Cite this article:   
Maonan MA,Liang CHANG,Guoqiang YU, et al. Spatiotemporal changes in land use and their driving factors in the Golmud River basin from 1980 to 2020[J]. Remote Sensing for Natural Resources, 2025, 37(4): 184-193.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024156     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/184
Fig.1  Geographic location map of the Golmud River basin
序号 一级类型 含义
1 耕地 种植农作物的土地
2 林地 生长乔木、灌木、竹类,以及沿海红树林地等林业用地
3 草地 以生长草本植物为主,覆盖度在5%以上的各类草地
4 水域 天然陆地水域和水利设施用地
5 建设用地 城乡居民点及其以外的工矿、交通等用地
6 未利用土地 目前还未利用的土地,包括难利用的土地
Tab.1  Classification system land use/land cover in the Golmud River basin
Fig.2  Inter-annual spatial distribution of land use types in the Golmud River basin
年份 统计类型 耕地 林地 草地 水域 建设用地 未利用土地
1980年 面积/km2 84.90 629.00 13 122.06 1 299.87 94.80 21 132.31
比重/% 0.23 1.73 36.09 3.57 0.26 58.11
1990年 面积/km2 88.16 629.00 13 120.01 1 265.15 97.15 21 163.48
比重/% 0.24 1.73 36.08 3.48 0.27 58.20
1995年 面积/km2 88.80 628.86 13 126.72 1264.00 87.30 21 167.49
比重/% 0.24 1.73 36.10 3.48 0.24 58.21
2000年 面积/km2 90.50 633.43 13 117.92 1265.46 113.07 21 142.56
比重/% 0.25 1.74 36.07 3.48 0.31 58.14
2005年 面积/km2 94.35 629.42 13 097.39 1 284.10 135.92 21 122.00
比重/% 0.26 1.73 36.02 3.53 0.37 58.09
2010年 面积/km2 94.34 629.59 13 095.02 1 293.69 136.20 21 114.11
比重/% 0.26 1.73 36.01 3.56 0.37 58.06
2013年 面积/km2 94.35 628.65 13 095.00 1 235.49 170.25 21 139.42
比重/% 0.26 1.73 36.01 3.40 0.47 58.13
2015年 面积/km2 94.35 629.42 13 096.50 1 298.53 134.72 21 109.66
比重/% 0.26 1.73 36.02 3.57 0.37 58.05
2020年 面积/km2 94.19 603.55 12 993.70 1 791.95 251.62 20 627.85
比重/% 0.26 1.66 35.73 4.93 0.69 56.73
Tab.2  Inter-annual area and proportion of land use types in the Golmud River basin
Fig.3  Inter-annual variation in land use types in the Golmud River basin
Fig.4  Amount of change and dynamic degree of various land use types in the Golmud River basin
1980年 2020年面积/km2 转出量/km2 转出率/%
草地 耕地 建设用地 林地 水域 未利用土地
草地 3.17 25.45 17.44 107.51 266.94 420.52 3.20
耕地 1.43 1.80 0.30 1.35 0.55 5.43 6.39
建设用地 0.50 0.27 0.07 3.04 0.72 4.61 4.87
林地 12.70 6.26 24.13 2.71 9.37 55.18 8.77
水域 6.38 4.01 0.50 1.75 66.12 78.75 6.06
未利用土地 271.14 1.00 109.56 10.17 456.26 848.12 4.01
转入量/km2 292.15 14.72 161.45 29.73 570.87 343.69
转入率/% 2.25 15.62 64.16 4.93 31.86 1.67
Tab.3  Land use transfer matrix of the Golmud River basin from 1980 to 2020
Fig.5  Spatial distribution of land use transfer in the Golmud River basin from 1980 to 2020
Fig.6  Trajectory of land use transfer in the Golmud River basin from 1980 to 2020
2015年 2020年面积/km2 转出量/km2 转出率/%
草地 耕地 建设用地 林地 水域 未利用土地
草地 0.54 14.32 19.45 106.80 367.58 508.69 3.88
耕地 1.14 0.58 0.61 0.39 0.29 3.01 3.19
建设用地 2.50 0.56 0.17 2.32 1.02 6.57 4.87
林地 19.58 0.23 24.21 3.57 14.88 62.47 9.93
水域 8.86 0.43 0.43 2.37 52.53 64.63 4.98
未利用土地 374.21 1.09 83.95 13.99 445.46 918.70 4.35
转入量/km2 406.29 2.85 123.48 36.59 558.54 436.30
转入率/% 3.13 3.03 49.07 6.06 31.17 2.12
Tab.4  Land use transfer matrix of the Golmud River basin from 2015 to 2020
类型 年份 PD/(个·hm-2) AWMSI FS
耕地 1980年 0.000 7 1.807 1 2.767 9
2000年 0.000 3 2.206 4 2.842 6
2020年 0.000 4 2.161 6 2.794 0
林地 1980年 0.002 7 2.939 1 7.771 5
2000年 0.002 7 2.921 8 7.725 3
2020年 0.002 8 2.900 6 7.734 8
草地 1980年 0.033 1 2.706 3 15.081 2
2000年 0.033 1 2.707 6 15.051 7
2020年 0.033 4 2.713 2 14.049 6
水域 1980年 0.007 7 2.345 5 4.769 4
2000年 0.007 3 2.380 8 4.704 1
2020年 0.007 6 2.354 0 4.475 3
建设用地 1980年 0.001 5 1.486 3 2.110 8
2000年 0.001 5 1.477 0 1.935 4
2020年 0.003 4 1.458 3 2.016 3
未利用土地 1980年 0.032 3 1.836 7 41.606 0
2000年 0.031 4 1.813 4 43.388 6
2020年 0.018 3 2.351 8 44.165 8
Tab.5  Results of the fragmentation indicators for various land types in the Golmud River basin
Fig.7  Inter-annual variation of meteorological and hydrological factors in the Golmud River basin
Fig.8  Spatial distribution of temperature and rainfall trends in the Golmud River basin
Fig.9  Inter-annual variation of total population and gross domestic product of Golmud City
Fig.10  Matrix of correlation coefficients of area of various land types, human activities, and meteorological and hydrological factors in the Golmud River basin
[1] 范泽孟. 基于SSP-RCP不同情景的京津冀地区土地覆被变化模拟[J]. 地理学报, 2022, 77(1):228-244.
[1] Fan Z M. Simulation of land cover change in Beijing-Tianjin-Hebei Region under different SSP-RCP scenarios[J]. Acta Geographica Sinica, 2022, 77(1):228-244.
[2] Foley J A, Defries R, Asner G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734):570-574.
[3] Turner B L, Janetos A C, Verburg P H, et al. Land system architecture:Using land systems to adapt and mitigate global environmental change[J]. Global Environmental Change, 2013, 23(2):395-397.
[4] 周厚侠. 黑河中游区域土地利用/土地覆盖变化及环境热效应研究[D]. 北京: 中国矿业大学(北京), 2016.
[4] Zhou H X. Study on the area of land use/land cover change and environmental thermal effect in the middle reaches of Hei River[D]. Beijing: China University of Mining and Technology, Beijing, 2016.
[5] Turner M G, Romme W H, Gardner R H, et al. Effects of fire size and pattern on early succession in Yellowstone National Park[J]. Ecological Monographs, 1997, 67(4):411.
[6] Turner B L. Local faces,global flows:The role of land use and land cover in global environmental change[J]. Land Degradation and Development, 1994, 5(2):71-78.
[7] Geist H J, Lambin E F. Proximate causes and underlying driving forces of tropical deforestation[J]. BioScience, 2002, 52(2):143.
[8] 覃德华. 闽东土地利用/覆盖变化的时空分异规律及其区域生态安全综合评价[D]. 福州: 福建农林大学, 2010.
[8] Qin D H. Research on the spatio-temporal distribution laws of LUCC and regional eco-security comprehensive assessment in Mindong[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010.
[9] 夏慧玲. 深圳市宝安区LUCC驱动力的时空分异研究[D]. 武汉: 华中农业大学, 2009.
[9] Xia H L. Temporal and spatial variation of LUCC driving forces in Bao’an District,Shenzhen[D]. Wuhan: Huazhong Agricultural University, 2009.
[10] 朱永华, 张生, 孙标, 等. 西辽河流域通辽平原区地下水埋深与植被及土壤特征的关系[J]. 水土保持通报, 2019, 39(1):29-36.
[10] Zhu Y H, Zhang S, Sun B, et al. Relationship between groundwater depth and characteristics of vegetation and soil in Tongliao Plain[J]. Bulletin of Soil and Water Conservation, 2019, 39(1):29-36.
[11] 梁露霜. 祁连山区土地利用/覆被变化(LUCC)的时空动态及其景观生态风险评价[D]. 兰州: 兰州大学, 2023.
[11] Liang L S. Spatiotemporal dynamics of land use/cover change (LUCC) and landscape ecological risk assessment in the Qilian Mountains[D]. Lanzhou: Lanzhou University, 2023.
[12] 彭海月, 任燕, 李琼, 等. 青藏高原土地利用/覆被时空变化特征[J]. 长江科学院院报, 2022, 39(8):41-49,57.
[12] Peng H Y, Ren Y, Li Q, et al. Spatial and temporal land use/cover change characteristics of Qinghai-Tibet Plateau[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(8):41-49,57.
[13] 张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征[J]. 科学通报, 2019, 64(27):2865-2875.
[13] Zhang Y L, Liu L S, Wang Z F, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27):2865-2875.
[14] 彭建, 蔡运龙, 何钢, 等. 喀斯特生态脆弱区猫跳河流域土地利用/覆被变化研究[J]. 山地学报, 2007, 25(5):566-576.
[14] Peng J, Cai Y L, He G, et al. Land use/cover change in ecologically fragile kast areas:A case study in Maotiaohe River basin,Guizhou China[J]. Journal of Mountain Science, 2007, 25(5):566-576.
[15] 姜宁宁. 基于GIS的渭北旱塬LUCC分析及其驱动力研究——以陕西省澄城县为例[D]. 西安: 西北大学, 2011.
[15] Jiang N N. Analysis and reasearch on LUCC and its driving forces in Weibei Dry Highland based on GIS:A case study of Chengcheng County in Shaanxi[D]. Xi’an: Northwest University, 2011.
[16] 阿依苏力坦·麦麦提艾力. 博斯腾湖流域土地利用/覆被变化及其驱动因子分析[D]. 乌鲁木齐: 新疆师范大学, 2014.
[16] Ayisulitan M. Study on the land use/cover change and analyze driving forces of Bosten Lake basin[D]. Urumqi: Xinjiang Normal University, 2014.
[17] 程磊, 徐宗学, 罗睿, 等. 渭河流域1980—2000年LUCC时空变化特征及其驱动力分析[J]. 水土保持研究, 2009, 16(5):1-6,30,287.
[17] Cheng L, Xu Z X, Luo R, et al. Spatial-temporal characteristics of LUCC and driving factor analysis for the Wei River basin from 1980 to 2000[J]. Research of Soil and Water Conservation, 2009, 16(5):1-6,30,287.
[18] Yang X, Ren L, Liu Y, et al. Hydrological response to land use and land cover changes in a sub-watershed of West Liaohe River basin,China[J]. Journal of Arid Land, 2014, 6(6):678-689.
[19] 马志昂, 盖艾鸿, 孙林军. 格尔木市盆地地区土地利用/覆盖变化时空演变[J]. 水土保持通报, 2015, 35(5):268-273,278.
[19] Ma Z A, Gai A H, Sun L J. Spatial-temporal evolution of land use/cover change in Golmud Basin[J]. Bulletin of Soil and Water Conservation, 2015, 35(5):268-273,278.
[20] 张梨梨. 格尔木—南山口铁路沿线土地利用/覆盖变化研究[D]. 北京: 中国地质大学(北京), 2014.
[20] Zhang L L. Land use/cover change research of the Qinghai-Tibet Railway-Golmud-Nanshankou from case[D]. Beijing: China University of Geosciences, 2014.
[21] 宁黎平, 韩丽蓉, 宋宜容, 等. 格尔木市区土地利用动态遥感调查[J]. 青海大学学报(自然科学版), 2005, 23(3):23-26.
[21] Ning L P, Han L R, Song Y R, et al. Remote sensing investigation in the status of land utilization in Germo urban district[J]. Journal of Qinghai University, 2005, 23(3):23-26.
[22] 格尔木市统计局. 2022年格尔木市国民经济与社会发展统计公报[EB/OL]. 2023(2023-03-15)[2024-01-12]. http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240688.html.
url: http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240688.html
[22] Golmud City Bureau of Statistics. Statistical bulletin of the national economic and social development of Golmud City in 2022[EB/OL]. 2023(2023-03-15)[2024-01-12]. http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240688.html.
url: http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240688.html
[23] 海西州统计局. 海西州2022年国民经济和社会发展统计公报[EB/OL]. 2023(2023-07-05)[2024-01-12]. http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240936.html.
url: http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240936.html
[23] Haixi Prefecture Bureau of Statistics. Statistical bulletin of the national economic and social development of Haixi Prefecture in 2022[EB/OL]. 2023(2023-07-05)[2024-01-12]. http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240936.html.
url: http://tjj.qinghai.gov.cn/tjData/cityBulletin/202401/t20240112_240936.html
[24] 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[EB/OL]. 中国科学院地理科学与资源研究所, 2018[2024-01-11]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=54.
url: https://www.resdc.cn/DOI/DOI.aspx?DOIID=54
[24] Xu X L, Liu J Y, Zhang S W, et al. Remote sensing dataset for land use and land cover monitoring over multiple periods in China(CNLUCC)[EB/OL]. Institute of Geographic Sciences and Resources,Chinese Academy of Sciences,China, 2018[2024-01-11]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=54.
url: https://www.resdc.cn/DOI/DOI.aspx?DOIID=54
[25] Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4):1931-1946.
[26] 王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1):81-87.
[26] Wang X L, Bao Y H. Study on the methods of land use dynamic change research[J]. Progress in Geography, 1999, 18(1):81-87.
[27] 徐岚, 赵羿. 利用马尔柯夫过程预测东陵区土地利用格局的变化[J]. 应用生态学报, 1993, 4(3):272-277.
[27] Xu L, Zhao Y. Forecast of land use pattern change in Dongling District of Shenyang:An application of Markov process[J]. Chinese Journal of Applied Ecology, 1993, 4(3):272-277.
[28] 张强, 朱飙, 杨金虎, 等. 西北地区气候湿化趋势的新特征[J]. 科学通报, 2021, 66(28-29):3757-3771.
[28] Zhang Q, Zhu B, Yang J H, et al. New characteristics about the climate humidification trend in Northwest China[J]. Chinese Science Bulletin, 2021, 66(28-29):3757-3771.
[1] LIU Hao, DU Shouhang, XING Jianghe, LI Jun, GAO Tianlin, YIN Chenghong. Land use classification of open-pit mining areas based on multi-source remote sensing time series features and convolutional neural networks[J]. Remote Sensing for Natural Resources, 2025, 37(4): 99-107.
[2] XING Xiaotian, WANG Qi, ZHAO Jiajun, LIU Pudong, ZHANG Jingyuan. Investigating land use and carbon storage changes in Jinan metropolitan circle based on the InVEST-PLUS coupled model[J]. Remote Sensing for Natural Resources, 2025, 37(4): 118-130.
[3] SU Boxiong, WU Mingquan, NIU Zheng, CHEN Fang, HUANG Wenjiang. Analyzing impact of the Beijing-Guangzhou high-speed railway on cities along the Hebei section based on remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2025, 37(4): 194-203.
[4] XIA Siying, LI Jingzhi, ZHENG Yujia. Changes in land-use-related carbon emissions in Xiangxi and their prediction[J]. Remote Sensing for Natural Resources, 2025, 37(4): 220-231.
[5] ZHENG Jiaxin, PEI Xiaolong, SONG Dongyang, TIAN Rui, ZHAO Zhongqiu, BAI Hang. Identification of ecologic zones based on ecosystem service value and ecological risk index from a perspective of spatiotemporal dynamics: A case study of Qinhuangdao City, Hebei Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 233-244.
[6] LU Jiantao, ZHENG Jianghua, PENG Jian, XIAO Xianghua, LI Gangyong, LIU Liang, WANG Renjun, ZHANG Jianli. Spatiotemporal evolution of ecological vulnerability in Xinjiang and its response to drought[J]. Remote Sensing for Natural Resources, 2025, 37(3): 253-264.
[7] LIN Xinyuan, CHENG Yangjian, XIE Wei, LI Chuanqing, NIE Wen. Exploring the ecological effects of land use changes in mining areas under different mining modes based on the Google Earth Engine[J]. Remote Sensing for Natural Resources, 2025, 37(3): 54-64.
[8] ZHANG Chengye, LI Mengyuan, XING Jianghe, QIU Yuhang. Comparative study of popular remote sensing teaching and research software for land use classification in a complex mine scene[J]. Remote Sensing for Natural Resources, 2025, 37(3): 9-16.
[9] CHAI Xinyu, WU Xianwen, CHEN Xiaohui, WANG Yu, ZHAO Xingtao. Multi-scenario simulation and prediction of land use in the Pearl River Delta urban agglomeration using the coupled Markov-FLUS model[J]. Remote Sensing for Natural Resources, 2025, 37(2): 140-147.
[10] LI Conghui, MA Caihong, AN Siwen, YANG Hang. Simulating the response of ecosystem services to the changes in production-living-ecological land use under different scenarios in the ecological economic belt along the Yellow River in Ningxia Hui Autonomous Region[J]. Remote Sensing for Natural Resources, 2025, 37(2): 155-163.
[11] LIU Yiyao, WU Taixia, WANG Shudong, JU Maosen. Exploring the performance of riparian zones in reducing non-point source pollution by coupling remote sensing with the SWAT model[J]. Remote Sensing for Natural Resources, 2025, 37(2): 256-264.
[12] WANG Jianping, CHEN Meiqiu. Identification of land use conflicts and zoning regulation in Nanchang City, China[J]. Remote Sensing for Natural Resources, 2025, 37(1): 113-121.
[13] ZHAO Hairong, MO Hongwei. Dynamic and natural driving factors of vegetation carbon sink in Hunan Province[J]. Remote Sensing for Natural Resources, 2024, 36(4): 304-313.
[14] ZHAO Qiang, WANG Tianjiu, WANG Tao, CHENG Sudan. InVEST model-based analysis of spatiotemporal evolution characteristics of habitat quality in the ecological green integrated demonstration area, Yangtze River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 187-195.
[15] WANG Hao, LIU Cai, CHEN Li, YANG Jinzhong, WEN Jing, SUN Yaqin, AN Na, ZHOU Yingjie, SHAO Zhitao. Correlation analysis between nonmetallic mines for building materials and social economy in the Tibet Autonomous Region[J]. Remote Sensing for Natural Resources, 2024, 36(3): 233-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech