Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 88-96     DOI: 10.6046/zrzyyg.2024329
|
InSAR-based monitoring and analysis of deformations induced by typical major geological hazards
SU Yunru1,2,3(), SHI Pengqing1,2,3(), ZHOU Xiaolong1,2,3, ZHANG Juan1,2,3
1. Lanzhou Field Scientific Observatory for Urban Geological Hazards, Lanzhou 730050, China
2. Gansu Geological and Environmental Monitoring Institute, Lanzhou 730050, China
3. Gansu Geological Hazard Data and Application Center of High Resolution Earth Observation System, Lanzhou 730050, China
Download: PDF(6425 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Given its all-day availability, all-weather adaptability, and high spatial resolution, the interferometric synthetic aperture radar (InSAR) technique has been widely applied in multiple fields, demonstrating strong adaptability and high practical value. Focusing on two typical landslide areas in Zhouqu County, Gansu Province, this study compared small baseline subset InSAR (SBAS-InSAR) monitoring results and Kalman filter prediction results with monitoring data from the global navigation satellite system (GNSS), confirming the reliability and accuracy of the SBAS-InSAR technique in monitoring landslide deformations. The results indicate that the SBAS-InSAR technique exhibited significant advantages in monitoring areas with deformations induced by geologic disasters, effectively overcoming the limitations of traditional monitoring means. This technique can provide critical technical support and scientific basis for early warning and management of geologic disasters in Zhouqu County and other areas prone to suffer these disasters.

Keywords Zhouqu County      small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) technology      monitoring data from global navigation satellite system (GNSS)      deformation monitoring      geologic disaster     
ZTFLH:  TP79  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yunru SU
Pengqing SHI
Xiaolong ZHOU
Juan ZHANG
Cite this article:   
Yunru SU,Pengqing SHI,Xiaolong ZHOU, et al. InSAR-based monitoring and analysis of deformations induced by typical major geological hazards[J]. Remote Sensing for Natural Resources, 2025, 37(6): 88-96.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024329     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/88
Fig.1  Landslide location map
Fig.2  Daxiaowan landslide
Fig.3  Zhongpai landslide
入射角/(°) 方位角/(°) 极化方式 轨道 轨道号 时间范围
38.981 192.925 6 VV 降轨 62-479 20230107—20240630
Tab.1  Sensor data
Fig.4  Satellite image coverage and location of the study area
滑坡 经度 纬度 安装时间
大小湾滑坡 104.339 402° E 33.782 507° N 2021年4月
中牌滑坡 104.417 715° E 33.728 272° N 2021年3月
Tab.2  Information on GNSS equipment
Fig.5  Technical flowchart
Fig.6  Landslide location and deformation
Fig.7  GNSS monitoring data
Fig.8  Daxiaowan landslide deformation analysis diagram
Fig.9  Zhongpai landslide deformation analysis diagram
Fig.10  Comparison of GNSS converted values with SBAS solved values
Fig.11  Comparison of GNSS converted values with SBAS solved values for Daxiaowan landslide
Fig.12  Comparison of GNSS converted values with SBAS solved values for Zhongpai landslide
[1] 许才军, 何平, 温扬茂, 等. InSAR技术及应用研究进展[J]. 测绘地理信息, 2015, 40(2):1-9.
[1] Xu C J, He P, Wen Y M, et al. Recent advances in SAR interferometry and its applications[J]. Journal of Geomatics, 2015, 40(2):1-9.
[2] 刘国祥, 刘文熙, 黄丁发. InSAR技术及其应用中的若干问题[J]. 测绘通报, 2001(8):10-12.
[2] Liu G X, Liu W X, Huang D F. InSAR technology and its key problems in applications[J]. Bulletin of Surveying and Mapping, 2001(8):10-12.
[3] 刘一良. 微波遥感的发展与应用[J]. 沈阳工程学院学报(自然科学版), 2008, 4(2):171-173.
[3] Liu Y L. The development and application of microwave sensing[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2008, 4(2):171-173.
[4] 姜景山, 张云华, 董晓龙. 微波遥感若干前沿技术及新一代空间遥感方法探讨[J]. 中国工程科学, 2000, 2(8):76-82.
[4] Jiang J S, Zhang Y H, Dong X L. The discussion of up to date technologies in microwave remote sensing and the new generation of space remote sensing method[J]. Engineering Science, 2000, 2(8):76-82.
[5] 陈冉丽, 王红军, 刁鑫鹏, 等. InSAR形变监测在开采沉陷损害鉴定及稳定性评价中的应用[J]. 测绘通报, 2023(12):106-111.
doi: 10.13474/j.cnki.11-2246.2023.0367
[5] Chen R L, Wang H J, Diao X P, et al. Application of InSAR deformation monitoring in mining subsidence damage identification and stability evaluation[J]. Bulletin of Surveying and Mapping, 2023(12):106-111.
doi: 10.13474/j.cnki.11-2246.2023.0367
[6] Li Z, Zhou J, Tian B. The glacier movement estimation and analysis with InSAR in the Qinghai-Tibetan Plateau[C]// 2009 IEEE International Geoscience and Remote Sensing Symposium. July 12-17,2009, Cape Town,South Africa.IEEE, 2009:II-578-II-581.
[7] 刘菲, 陈蜜, 朱琳, 等. 采用升降轨Sentinel-1数据监测北京城市副中心地面沉降[J]. 地理信息世界, 2021, 28(6):44-52.
[7] Liu F, Chen M, Zhu L, et al. Monitoring the land subsidence of Beijing City sub-center with ascending and descending Sentinel-1 data[J]. Geomatics World, 2021, 28(6):44-52.
[8] Kubanek J, Westerhaus M, Schenk A, et al. Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR[J]. Remote Sensing of Environment, 2015,164:16-25.
[9] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142.
doi: 10.1038/364138a0
[10] 许才军, 林敦灵, 温扬茂. 利用InSAR数据的汶川地震形变场提取及分析[J]. 武汉大学学报(信息科学版), 2010, 35(10):1138-1142,1261-1262.
[10] Xu C J, Lin D L, Wen Y M. Extract and analysis surface deformation caused by Wenchuan Mw7.9 earthquake from InSAR data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10):1138-1142,1261-1262.
[11] 屈春燕, 张桂芳, 单新建, 等. 2010年青海玉树地震同震-震后形变场特征及演化过程[J]. 地球物理学报, 2013, 56(7):2280-2291.
[11] Qu C Y, Zhang G F, Shan X J, et al. Coseismic and postseismic deformation fields of the 2010 Yushu,Qinghai MS7.1 earthquake and their evolution processes[J]. Chinese Journal of Geophysics, 2013, 56(7):2280-2291.
[12] 刘振江, 韩炳权, 能懿菡, 等. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2025, 50(2):344-355.
[12] Liu Z J, Han B Q, Neng Y H, et al. Source parameters and slip distribution of the 2023 mW 6.0 Jishishan(Gansu,China) earthquake constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2):344-355.
[13] Fruneau B, Achache J, Delacourt C. Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry[J]. Tectonophysics, 1996, 265(3/4):181-190.
doi: 10.1016/S0040-1951(96)00047-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0040195196000479
[14] 代聪, 李为乐, 陆会燕, 等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版), 2021, 46(7):994-1002.
[14] Dai C, Li W L, Lu H Y, et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):994-1002.
[15] 丁宏伟. 甘肃省舟曲地质灾害发育特征及典型地质灾害剖析[J]. 甘肃地质, 2012, 21(1):47-53.
[15] Ding H W. Characteristics of typical geological disasters in Zhouqu County of Gansu Province[J]. Gansu Geology, 2012, 21(1):47-53.
[16] 俞晶星, 郑文俊, 袁道阳, 等. 西秦岭西段光盖山-迭山断裂带坪定-化马断裂的新活动性与滑动速率[J]. 第四纪研究, 2012, 32(5):957-967.
[16] Yu J X, Zheng W J, Yuan D Y, et al. Late quaternary active characteristics and slip-rate of pingdinghuama fault,the eastern segment of Guanggaishan-dieshan fault zone(west Qinling mountain)[J]. Quaternary Sciences, 2012, 32(5):957-967.
[17] 李媛茜, 张毅, 孟兴民, 等. 活动构造断裂带巨型滑坡活动特性研究——以白龙江流域大小湾滑坡为例[J]. 兰州大学学报(自然科学版), 2021, 57(3):360-368.
[17] Li Y X, Zhang Y, Meng X M, et al. Analysis the activity characteristics of the giant landslide in active tectonic fault zone:A case study of Daxiaowan landslide in Bailong River Basin[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(3):360-368.
[18] 杨为民, 黄晓, 张春山, 等. 白龙江流域坪定—化马断裂带滑坡特征及其形成演化[J]. 吉林大学学报(地球科学版), 2014, 44(2):574-583.
[18] Yang W M, Huang X, Zhang C S, et al. Deformation behavior of landslides and their formation mechanism along Pingding-Huama active fault in Bailongjiang River Region[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(2):574-583.
[19] 杨为民, 黄晓, 张永双, 等. 甘肃南部坪定-化马断裂带滑坡变形特征及其防治[J]. 地质通报, 2013, 32(12):1925-1935.
[19] Yang W M, Huang X, Zhang Y S, et al. The deformation characteristics of the landslide along Pingding-Huama active fault zone and its prevention and control[J]. Geological Bulletin of China, 2013, 32(12):1925-1935.
[20] 刘斌, 张丽, 李曼, 等. 融合CR和GNSS的InSAR滑坡形变时序监测方法和存储介质:中国,CN117761716A[P].2024-03-26.
[20] Liu B, Zhang L, Li M, et al. InSAR landslide deformation time sequence monitoring method fusing CR and GNSS and storage medium:China,CN117761716A[P].2024-03-26.
[21] Lu F, Zeng H. Application of Kalman filter model in the landslide deformation forecast[J]. Scientific Reports, 2020, 10(1):1028.
doi: 10.1038/s41598-020-57881-3 pmid: 31974439
[22] 周小龙, 石鹏卿. 基于SBAS-InSAR技术的甘肃华亭市地表形变监测与分析[J]. 测绘与空间地理信息, 2023, 46(2):30-33,38.
[22] Zhou X L, Shi P Q. Monitoring and analysis of surface deformation in Huating City,Gansu Province based on SBAS-InSAR technology[J]. Geomatics & Spatial Information Technology, 2023, 46(2):30-33,38.
[23] 姜德才, 郑向向, 王宁, 等. 时序InSAR技术在珠三角地区地质灾害隐患识别中的应用[J]. 自然资源遥感, 2023, 35(3):292-301.doi:10.6046/zrzyyg.2022190.
[23] Jiang D C, Zheng X X, Wang N, et al. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3):292-301.doi:10.6046/zrzyyg.2022190.
[24] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792 url: http://ieeexplore.ieee.org/document/1166596/
[1] GAO Feng, ZHANG Honghuai, ZHOU Wei, WANG Xingxing, SUN Liying, XU Wenxin, WU Di. Monitoring and identification of potential geological hazard sites using comprehensive remote sensing in Ningbo, Zhejiang Province[J]. Remote Sensing for Natural Resources, 2025, 37(6): 263-274.
[2] XUAN Jiabin, LI Ruren, FU Wenxue. Deformation monitoring using time-series InSAR with dual-polarization optimization[J]. Remote Sensing for Natural Resources, 2025, 37(6): 128-137.
[3] YU Bing, ZHANG Chunyu, WANG Jinri, LIU Guoxiang, DAI Keren, MA Deying. SBAS-InSAR-based long time-series deformation monitoring and landslide hazard identification in the Baihetan reservoir area[J]. Remote Sensing for Natural Resources, 2025, 37(6): 156-168.
[4] LI Zhi, ZHANG Shubi, LI Minggeng, CHEN Qiang, BIAN Hefang, LI Shijin, GAO Yandong, ZHANG Yansuo, ZHANG Di. Stacking-assisted DS-InSAR method for monitoring surface deformations in complex mining areas[J]. Remote Sensing for Natural Resources, 2025, 37(4): 12-20.
[5] YANG Chengsheng, WEI Chunrui, WEI Yunjie, LI Zufeng, DING Huilan. Whole-process deformation monitoring of the Baige landslide in Tibet before and after instability based on multisource remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(3): 203-211.
[6] YU Wenxuan, LI Yimin, JI Peikun, FENG Xianjie, XIANG Qianying. Time series surface deformation of the upper reaches of Huangdeng hydropower station in Lanping County based on ascending and descending SAR data[J]. Remote Sensing for Natural Resources, 2024, 36(4): 282-294.
[7] WU Dehong, HAO Lina, YAN Lihua, TANG Fengshun, ZHENG Guang. InSAR-based detection and deformation factor analysis of landslide clusters in the Jinsha River[J]. Remote Sensing for Natural Resources, 2024, 36(3): 259-266.
[8] JIN Xintian, WANG Shijie, ZHANG Lanjun, GAO Xingyue. InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations[J]. Remote Sensing for Natural Resources, 2024, 36(1): 26-34.
[9] ZHAO Xia, MA Xinyan, YU Qian, WANG Zhaobing. Application of high-resolution InSAR technique in monitoring deformations in the Beijing Daxing International Airport[J]. Remote Sensing for Natural Resources, 2024, 36(1): 49-57.
[10] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[11] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
[12] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[13] LIU Zhimin, LI Yongsheng, ZHANG Jingfa, LUO Yi, LIU Bin. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 37-42.
[14] HUANG Zhao-Quan, ZHANG Deng-Rong, WANG Fan, DANG Fu-Xing, LI Zhi-Zhong. Differential SAR Interferometry for the Monitoring of Underground Coal Spontaneous Combustion Zone Surface Deformation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech