Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (2) : 138-142     DOI: 10.6046/gtzyyg.2013.02.23
|
Morphological characteristics of Kumtagh sand dunes in Beishan,Xinjiang Uygur Autonomous Region
JIAO Yinxia1,2, MU Yuanrui1,3, ZHANG Wangsheng1, GUO Jie1, CHEN Yilin1, LI Xiaomu2
1. Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China;
2. The Sixth Middle School of Kashi in Xinjiang Uygur Autonomous Region, Kashi 844000, China;
3. The Eleventh Team of Xinjiang Bureau of Geology and Mineral Resources, Changji 831100, China
Download: PDF(1066 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The purpose of this study is to provide the basis for further study of desertification origin and the protection of ecological environment in this region. The morphological characteristics of Kumtagh sand dunes in Beishan of Xinjiang Uygur Autonomous Region were analyzed, the Landsat ETM images of morphotype of Kumtagh sand dunes were cut out, and the sharp images were also enhanced. On the basis of SRTM data,the digital elevation mode for Kumtagh sand dunes were obtained by means of three-dimensional analysis module of ArcGIS software. Simple wind figures were drawn according to the local terrain and physiognomic characteristics. The characteristics of each type of sand dune were analyzed in detail. This study results that sand dunes in Kumtagh form a long and narrow "S" shaped ridge due to the unique natural geographic features,and the dune morphology is diverse and complex. The main types of sand dunes are crescent dune chains and complex longitudinal sand dunes. The single crescent dunes are scattered, the linear dunes are less distributed,and the dendrite dunes are in the early development stage.

:  TP79  
Issue Date: 28 April 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
JIAO Yinxia, MU Yuanrui, ZHANG Wangsheng, GUO Jie, CHEN Yilin, LI Xiaomu. Morphological characteristics of Kumtagh sand dunes in Beishan,Xinjiang Uygur Autonomous Region[J]. REMOTE SENSING FOR LAND & RESOURCES,2013, 25(2): 138-142.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.02.23     OR     https://www.gtzyyg.com/EN/Y2013/V25/I2/138

[1] 费道洛维奇.奥布鲁契夫开始考察以来沙漠学的成就[M]//陈治平译.沙漠地貌的起源及研究方法.北京:科学出版社,1962:1-15. Fedolovich B А.Research achievements in desert research since Oboruqiev's desert exploration[M]//Translated by Chen Z P.Origin of desert landforms and research methods.Beijing:Science Press,1962:1-15.

[2] Breed C S,Grow T.Morphology and distribution of dunes in sand seas observed by remote sensing[M]//Mckee E D.A study of global sand seas.Honolulu,Hawaii:University Press of Pacific,2004:253-302.

[3] Pye K,Tsoar H.Aeolian sand and sand dunes[M].London:Unwin Hyman,1990:396.

[4] 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:139-143. Wu Z.Aeolian landforms and sand control engineering[M].Beijing:Science Press,2003:139-143.

[5] 王涛,陈广庭.中国的沙漠·戈壁[M].上海:上海科学技术文献出版社,2008:47-59,172-174. Wang T,Chen G T.China’s desert and gobi[M].Shanghai:Science and Technology Literature Press of Shanghai,2008:47-59,172-174.

[6] 杨昕,汤国安,邓凤东,等.ERDAS遥感数字图像处理实验教程[M].北京:科学出版社,2009:81. Yang X,Tang G A,Deng F D,et al.ERDAS remote sensing digital image processing experiments tutorial[M].Beijing:Science Press,2009:81.

[7] 杨景春,李有利.地貌学原理[M].北京:北京大学出版社,2001:110-125. Yang J C,Li Y L.Physiognomy theory[M].Beijing:Beijing University Press, 2001:110-125.

[8] 李江风.沙漠气候[M].北京:气象出版社,2001:44-79. Li J F.Desert climate[M].Beijing:China Meteorological Press,2001:44-79.

[9] 汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京.科学出版社,2012:309-316. Tang G A,Yang X.ArcGIS geographic information system space analysis experiments tutorial[M].Beijing:Science Press,2012:309-316.

[10] 韩永翔,方小敏,宋连春,等.塔里木盆地中的大气环流及沙尘暴成因探讨——根据沙漠风积地貌和气象观测重建的风场[J].大气科学,2005,29(4):627-635. Han Y X,Fang X M,Song L C,et al.A study of atmospheric circulation and dust storm causes of formation in the Tarim Basin:The restructured wind field by shapes of dune and observed prevailing wind[J].Chinese Journal of Atmospheric Sciences,2005,29(4):627-635.

[11] 冉喜峰.库姆塔格[Z].吐鲁番旅游网.http://www.tianshannet.com.2008-08-22. Ran X F.Kumtagh[Z].Turpan Travel Network.http://www.tianshannet.com.2008-08-22.

[12] 吴正.风沙地貌研究论文选集[M].北京:海洋出版社,2004:72-76,101-104. Wu Z.The research papers anthology of aeolian landforms[M].Beijing:Ocean Press,2004:72-76,101-104.

[13] Schwammle V,Herrmann H J.Solitary wave behaviour of sand dunes[J].Nature,2003,426(6967):619-620.

[14] Cooke R A,Warren A,Goudie A.Desert geomorphology[M].London:UCL Press,1993.

[15] 白旸.巴丹吉林沙漠高大沙山的内部结构及形成过程研究[D].兰州:兰州大学,2011. Bai Y.Internal structure and formation process of mega-dunes in the Badain Jaran desert[D].Lanzhou:Lanzhou University,2011.

[16] 吴正.风沙地貌学[M].北京:科学出版社,1987:101-140. Wu Z.Sandstorm geomorphology[M].Beijing:Science Press,1987:101-140.

[17] 董治宝,屈建军.库姆塔格沙漠地貌图[M].北京:科学出版社,2009:17-23. Dong Z B,Qu J J.The geomorphological map of Kumtagh Desert[M].Beijing:Science Press,2009:17-23.

[18] 董治宝,苏志珠,钱广强,等.库姆塔格沙漠风沙地貌[M].北京:科学出版社,2011:208-210. Dong Z B,Su Z Z,Qian G Q,et al.Aeolian landforms in the Kumtagh Desert[M].Beijing:Science Press,2011:208-210.

[19] 新疆综合考察队地貌组.新疆地貌[M].北京:科学出版社,1978:22-23. Xinjiang Complex Expedition Landforms Group.Xinjiang landform[M].Beijing:Science Press,1978:22-23.

[1] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[7] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[10] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[11] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[14] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[15] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech